Your browser doesn't support javascript.
loading
Differential requirement for protein synthesis in presynaptic unmuting and muting in hippocampal glutamate terminals.
Crawford, Devon C; Jiang, Xiaoping; Taylor, Amanda; Moulder, Krista L; Mennerick, Steven.
Afiliación
  • Crawford DC; Graduate Program in Neuroscience, Washington University School of Medicine, St. Louis, Missouri, United States of America.
PLoS One ; 7(12): e51930, 2012.
Article en En | MEDLINE | ID: mdl-23272190
ABSTRACT
Synaptic function and plasticity are crucial for information processing within the nervous system. In glutamatergic hippocampal neurons, presynaptic function is silenced, or muted, after strong or prolonged depolarization. This muting is neuroprotective, but the underlying mechanisms responsible for muting and its reversal, unmuting, remain to be clarified. Using cultured rat hippocampal neurons, we found that muting induction did not require protein synthesis; however, slow forms of unmuting that depend on protein kinase A (PKA), including reversal of depolarization-induced muting and forskolin-induced unmuting of basally mute synapses, required protein synthesis. In contrast, fast unmuting of basally mute synapses by phorbol esters was protein synthesis-independent. Further studies of recovery from depolarization-induced muting revealed that protein levels of Rim1 and Munc13-1, which mediate vesicle priming, correlated with the functional status of presynaptic terminals. Additionally, this form of unmuting was prevented by both transcription and translation inhibitors, so proteins are likely synthesized de novo after removal of depolarization. Phosphorylated cyclic adenosine monophosphate response element-binding protein (pCREB), a nuclear transcription factor, was elevated after recovery from depolarization-induced muting, consistent with a model in which PKA-dependent mechanisms, possibly including pCREB-activated transcription, mediate slow unmuting. In summary, we found that protein synthesis was required for slower, PKA-dependent unmuting of presynaptic terminals, but it was not required for muting or a fast form of unmuting. These results clarify some of the molecular mechanisms responsible for synaptic plasticity in hippocampal neurons and emphasize the multiple mechanisms by which presynaptic function is modulated.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Biosíntesis de Proteínas / Terminales Presinápticos / Ácido Glutámico / Hipocampo / Neuronas Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: PLoS One Asunto de la revista: CIENCIA / MEDICINA Año: 2012 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Biosíntesis de Proteínas / Terminales Presinápticos / Ácido Glutámico / Hipocampo / Neuronas Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: PLoS One Asunto de la revista: CIENCIA / MEDICINA Año: 2012 Tipo del documento: Article País de afiliación: Estados Unidos
...