Your browser doesn't support javascript.
loading
A Poisson hierarchical modelling approach to detecting copy number variation in sequence coverage data.
Sepúlveda, Nuno; Campino, Susana G; Assefa, Samuel A; Sutherland, Colin J; Pain, Arnab; Clark, Taane G.
Afiliación
  • Sepúlveda N; London School of Hygiene and Tropical Medicine, London, UK. nuno.sepulveda@lshtm.ac.uk
BMC Genomics ; 14: 128, 2013 Feb 26.
Article en En | MEDLINE | ID: mdl-23442253
BACKGROUND: The advent of next generation sequencing technology has accelerated efforts to map and catalogue copy number variation (CNV) in genomes of important micro-organisms for public health. A typical analysis of the sequence data involves mapping reads onto a reference genome, calculating the respective coverage, and detecting regions with too-low or too-high coverage (deletions and amplifications, respectively). Current CNV detection methods rely on statistical assumptions (e.g., a Poisson model) that may not hold in general, or require fine-tuning the underlying algorithms to detect known hits. We propose a new CNV detection methodology based on two Poisson hierarchical models, the Poisson-Gamma and Poisson-Lognormal, with the advantage of being sufficiently flexible to describe different data patterns, whilst robust against deviations from the often assumed Poisson model. RESULTS: Using sequence coverage data of 7 Plasmodium falciparum malaria genomes (3D7 reference strain, HB3, DD2, 7G8, GB4, OX005, and OX006), we showed that empirical coverage distributions are intrinsically asymmetric and overdispersed in relation to the Poisson model. We also demonstrated a low baseline false positive rate for the proposed methodology using 3D7 resequencing data and simulation. When applied to the non-reference isolate data, our approach detected known CNV hits, including an amplification of the PfMDR1 locus in DD2 and a large deletion in the CLAG3.2 gene in GB4, and putative novel CNV regions. When compared to the recently available FREEC and cn.MOPS approaches, our findings were more concordant with putative hits from the highest quality array data for the 7G8 and GB4 isolates. CONCLUSIONS: In summary, the proposed methodology brings an increase in flexibility, robustness, accuracy and statistical rigour to CNV detection using sequence coverage data.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Contexto en salud: 3_ND Problema de salud: 3_malaria Asunto principal: Modelos Estadísticos / Análisis de Secuencia / Genómica / Variaciones en el Número de Copia de ADN Tipo de estudio: Prognostic_studies / Risk_factors_studies Idioma: En Revista: BMC Genomics Asunto de la revista: GENETICA Año: 2013 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Contexto en salud: 3_ND Problema de salud: 3_malaria Asunto principal: Modelos Estadísticos / Análisis de Secuencia / Genómica / Variaciones en el Número de Copia de ADN Tipo de estudio: Prognostic_studies / Risk_factors_studies Idioma: En Revista: BMC Genomics Asunto de la revista: GENETICA Año: 2013 Tipo del documento: Article
...