Your browser doesn't support javascript.
loading
Multiscale, converging defects of macro-porosity, microstructure and matrix mineralization impact long bone fragility in NF1.
Kühnisch, Jirko; Seto, Jong; Lange, Claudia; Schrof, Susanne; Stumpp, Sabine; Kobus, Karolina; Grohmann, Julia; Kossler, Nadine; Varga, Peter; Osswald, Monika; Emmerich, Denise; Tinschert, Sigrid; Thielemann, Falk; Duda, Georg; Seifert, Wenke; El Khassawna, Thaqif; Stevenson, David A; Elefteriou, Florent; Kornak, Uwe; Raum, Kay; Fratzl, Peter; Mundlos, Stefan; Kolanczyk, Mateusz.
Afiliación
  • Kühnisch J; Institute for Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, Berlin, Germany ; FG Development & Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany.
  • Seto J; Department of Biomaterials, Max Planck Institute for Colloids and Interfaces, Potsdam, Germany ; Department of Chemistry, Universität Konstanz, Konstanz, Germany.
  • Lange C; Department of Biomaterials, Max Planck Institute for Colloids and Interfaces, Potsdam, Germany ; Institut für Physiologische Chemie, MTZ, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
  • Schrof S; Julius Wolff Institute & Brandenburg School of Regenerative Therapies, Charité - Universitätsmedizin Berlin, Berlin, Germany.
  • Stumpp S; Institute for Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, Berlin, Germany.
  • Kobus K; FG Development & Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany.
  • Grohmann J; FG Development & Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany.
  • Kossler N; FG Development & Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany.
  • Varga P; Julius Wolff Institute & Brandenburg School of Regenerative Therapies, Charité - Universitätsmedizin Berlin, Berlin, Germany.
  • Osswald M; FG Development & Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany.
  • Emmerich D; Institute for Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, Berlin, Germany ; FG Development & Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany.
  • Tinschert S; Division für Humangenetik, Medizinische Universität Innsbruck, Innsbruck, Austria ; Institut für Klinische Genetik, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
  • Thielemann F; Klinik für Orthopädie, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
  • Duda G; Julius Wolff Institute & Brandenburg School of Regenerative Therapies, Charité - Universitätsmedizin Berlin, Berlin, Germany ; Berlin-Brandenburg Center for Regenerative Therapies, Berlin, Germany.
  • Seifert W; Institute for Vegetative Anatomy, Charité - Universitätsmedizin Berlin, Berlin, Germany.
  • El Khassawna T; Laboratory of Experimental Trauma Surgery Giessen, Justus-Liebig University Giessen, Giessen, Germany.
  • Stevenson DA; University of Utah, Department of Pediatrics, Division of Medical Genetics, Salt Lake City, Utah, United States of America.
  • Elefteriou F; Department of Medicine, Pharmacology and Cancer Biology, Center for Bone Biology, Vanderbilt University - Medical Center, Nashville, Tennessee, United States of America.
  • Kornak U; Institute for Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, Berlin, Germany ; FG Development & Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany.
  • Raum K; Julius Wolff Institute & Brandenburg School of Regenerative Therapies, Charité - Universitätsmedizin Berlin, Berlin, Germany.
  • Fratzl P; Department of Biomaterials, Max Planck Institute for Colloids and Interfaces, Potsdam, Germany ; Berlin-Brandenburg Center for Regenerative Therapies, Berlin, Germany.
  • Mundlos S; Institute for Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, Berlin, Germany ; FG Development & Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany ; Berlin-Brandenburg Center for Regenerative Therapies, Berlin, Germany.
  • Kolanczyk M; Institute for Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, Berlin, Germany ; FG Development & Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany.
PLoS One ; 9(1): e86115, 2014.
Article en En | MEDLINE | ID: mdl-24465906
ABSTRACT
Bone fragility due to osteopenia, osteoporosis or debilitating focal skeletal dysplasias is a frequent observation in the Mendelian disease Neurofibromatosis type 1 (NF1). To determine the mechanisms underlying bone fragility in NF1 we analyzed two conditional mouse models, Nf1Prx1 (limb knock-out) and Nf1Col1 (osteoblast specific knock-out), as well as cortical bone samples from individuals with NF1. We examined mouse bone tissue with micro-computed tomography, qualitative and quantitative histology, mechanical tensile analysis, small-angle X-ray scattering (SAXS), energy dispersive X-ray spectroscopy (EDX), and scanning acoustic microscopy (SAM). In cortical bone of Nf1Prx1 mice we detected ectopic blood vessels that were associated with diaphyseal mineralization defects. Defective mineral binding in the proximity of blood vessels was most likely due to impaired bone collagen formation, as these areas were completely devoid of acidic matrix proteins and contained thin collagen fibers. Additionally, we found significantly reduced mechanical strength of the bone material, which was partially caused by increased osteocyte volume. Consistent with these observations, bone samples from individuals with NF1 and tibial dysplasia showed increased osteocyte lacuna volume. Reduced mechanical properties were associated with diminished matrix stiffness, as determined by SAM. In line with these observations, bone tissue from individuals with NF1 and tibial dysplasia showed heterogeneous mineralization and reduced collagen fiber thickness and packaging. Collectively, the data indicate that bone fragility in NF1 tibial dysplasia is partly due to an increased osteocyte-related micro-porosity, hypomineralization, a generalized defect of organic matrix formation, exacerbated in the regions of tensional and bending force integration, and finally persistence of ectopic blood vessels associated with localized macro-porotic bone lesions.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Huesos / Matriz Ósea / Calcificación Fisiológica / Neurofibromatosis 1 Tipo de estudio: Qualitative_research Límite: Animals Idioma: En Revista: PLoS One Asunto de la revista: CIENCIA / MEDICINA Año: 2014 Tipo del documento: Article País de afiliación: Alemania

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Huesos / Matriz Ósea / Calcificación Fisiológica / Neurofibromatosis 1 Tipo de estudio: Qualitative_research Límite: Animals Idioma: En Revista: PLoS One Asunto de la revista: CIENCIA / MEDICINA Año: 2014 Tipo del documento: Article País de afiliación: Alemania
...