Your browser doesn't support javascript.
loading
Structural mechanism of voltage-dependent gating in an isolated voltage-sensing domain.
Li, Qufei; Wanderling, Sherry; Paduch, Marcin; Medovoy, David; Singharoy, Abhishek; McGreevy, Ryan; Villalba-Galea, Carlos A; Hulse, Raymond E; Roux, Benoît; Schulten, Klaus; Kossiakoff, Anthony; Perozo, Eduardo.
Afiliación
  • Li Q; Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, USA.
  • Wanderling S; Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, USA.
  • Paduch M; Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, USA.
  • Medovoy D; Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, USA.
  • Singharoy A; Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.
  • McGreevy R; Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.
  • Villalba-Galea CA; Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA.
  • Hulse RE; Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, USA.
  • Roux B; 1] Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, USA. [2] Institute of Biophysical Dynamics, University of Chicago, Chicago, Illinois, USA.
  • Schulten K; 1] Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA. [2] Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.
  • Kossiakoff A; 1] Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, USA. [2] Institute of Biophysical Dynamics, University of Chicago, Chicago, Illinois, USA.
  • Perozo E; 1] Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, USA. [2] Institute of Biophysical Dynamics, University of Chicago, Chicago, Illinois, USA.
Nat Struct Mol Biol ; 21(3): 244-52, 2014 Mar.
Article en En | MEDLINE | ID: mdl-24487958
ABSTRACT
The transduction of transmembrane electric fields into protein motion has an essential role in the generation and propagation of cellular signals. Voltage-sensing domains (VSDs) carry out these functions through reorientations of positive charges in the S4 helix. Here, we determined crystal structures of the Ciona intestinalis VSD (Ci-VSD) in putatively active and resting conformations. S4 undergoes an ~5-Å displacement along its main axis, accompanied by an ~60° rotation. This movement is stabilized by an exchange in countercharge partners in helices S1 and S3 that generates an estimated net charge transfer of ~1 eo. Gating charges move relative to a ''hydrophobic gasket' that electrically divides intra- and extracellular compartments. EPR spectroscopy confirms the limited nature of S4 movement in a membrane environment. These results provide an explicit mechanism for voltage sensing and set the basis for electromechanical coupling in voltage-dependent enzymes and ion channels.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Contexto en salud: 3_ND Problema de salud: 3_neglected_diseases / 3_zoonosis Asunto principal: Ciona intestinalis / Estructura Terciaria de Proteína Límite: Animals / Humans Idioma: En Revista: Nat Struct Mol Biol Asunto de la revista: BIOLOGIA MOLECULAR Año: 2014 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Contexto en salud: 3_ND Problema de salud: 3_neglected_diseases / 3_zoonosis Asunto principal: Ciona intestinalis / Estructura Terciaria de Proteína Límite: Animals / Humans Idioma: En Revista: Nat Struct Mol Biol Asunto de la revista: BIOLOGIA MOLECULAR Año: 2014 Tipo del documento: Article País de afiliación: Estados Unidos
...