Your browser doesn't support javascript.
loading
Time-frequency methods for structural health monitoring.
Pyayt, Alexander L; Kozionov, Alexey P; Mokhov, Ilya I; Lang, Bernhard; Meijer, Robert J; Krzhizhanovskaya, Valeria V; Sloot, Peter M A.
Afiliación
  • Pyayt AL; Siemens LLC, Corporate Technology, Volynskiy lane 3A, St. Petersburg, 191186, Russia. alexander.pyayt@siemens.com.
  • Kozionov AP; Siemens LLC, Corporate Technology, Volynskiy lane 3A, St. Petersburg, 191186, Russia. alexey.kozionov@siemens.com.
  • Mokhov II; Siemens LLC, Corporate Technology, Volynskiy lane 3A, St. Petersburg, 191186, Russia. ilya.mokhov@siemens.com.
  • Lang B; Siemens AG, Corporate Technology, Muenchen, 80200, Germany. bernhard.lang@siemens.com.
  • Meijer RJ; University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands. robert.meijer@tno.nl.
  • Krzhizhanovskaya VV; University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands. V.Krzhizhanovskaya@uva.nl.
  • Sloot PM; University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands. P.M.A.Sloot@uva.nl.
Sensors (Basel) ; 14(3): 5147-73, 2014 Mar 12.
Article en En | MEDLINE | ID: mdl-24625740
Detection of early warning signals for the imminent failure of large and complex engineered structures is a daunting challenge with many open research questions. In this paper we report on novel ways to perform Structural Health Monitoring (SHM) of flood protection systems (levees, earthen dikes and concrete dams) using sensor data. We present a robust data-driven anomaly detection method that combines time-frequency feature extraction, using wavelet analysis and phase shift, with one-sided classification techniques to identify the onset of failure anomalies in real-time sensor measurements. The methodology has been successfully tested at three operational levees. We detected a dam leakage in the retaining dam (Germany) and "strange" behaviour of sensors installed in a Boston levee (UK) and a Rhine levee (Germany).
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Contexto en salud: 15_ODS3_global_health_risks / 1_ASSA2030 Problema de salud: 15_riesgos_hidrometeorologicos_geofisicos / 1_surtos_doencas_emergencias Asunto principal: Algoritmos / Inundaciones / Colapso de la Estructura Tipo de estudio: Prognostic_studies Idioma: En Revista: Sensors (Basel) Año: 2014 Tipo del documento: Article País de afiliación: Rusia

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Contexto en salud: 15_ODS3_global_health_risks / 1_ASSA2030 Problema de salud: 15_riesgos_hidrometeorologicos_geofisicos / 1_surtos_doencas_emergencias Asunto principal: Algoritmos / Inundaciones / Colapso de la Estructura Tipo de estudio: Prognostic_studies Idioma: En Revista: Sensors (Basel) Año: 2014 Tipo del documento: Article País de afiliación: Rusia
...