Adaptive multiclass classification for brain computer interfaces.
Neural Comput
; 26(6): 1108-27, 2014 Jun.
Article
en En
| MEDLINE
| ID: mdl-24684452
We consider the problem of multiclass adaptive classification for brain-computer interfaces and propose the use of multiclass pooled mean linear discriminant analysis (MPMLDA), a multiclass generalization of the adaptation rule introduced by Vidaurre, Kawanabe, von Bünau, Blankertz, and Müller (2010) for the binary class setting. Using publicly available EEG data sets and tangent space mapping (Barachant, Bonnet, Congedo, & Jutten, 2012) as a feature extractor, we demonstrate that MPMLDA can significantly outperform state-of-the-art multiclass static and adaptive methods. Furthermore, efficient learning rates can be achieved using data from different subjects.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Procesamiento de Señales Asistido por Computador
/
Encéfalo
/
Mapeo Encefálico
/
Interfaces Cerebro-Computador
Límite:
Humans
Idioma:
En
Revista:
Neural Comput
Asunto de la revista:
INFORMATICA MEDICA
Año:
2014
Tipo del documento:
Article
País de afiliación:
Países Bajos