Your browser doesn't support javascript.
loading
Deficiency of double-strand DNA break repair does not impair Mycobacterium tuberculosis virulence in multiple animal models of infection.
Heaton, Brook E; Barkan, Daniel; Bongiorno, Paola; Karakousis, Petros C; Glickman, Michael S.
Afiliación
  • Heaton BE; Immunology Program, Sloan Kettering Institute, New York, New York, USA.
  • Barkan D; Division of Infectious Diseases, Memorial Sloan Kettering Cancer Center, New York, New York, USA.
  • Bongiorno P; Immunology Program, Sloan Kettering Institute, New York, New York, USA.
  • Karakousis PC; Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
  • Glickman MS; Immunology Program, Sloan Kettering Institute, New York, New York, USA Division of Infectious Diseases, Memorial Sloan Kettering Cancer Center, New York, New York, USA glickmam@mskcc.org.
Infect Immun ; 82(8): 3177-85, 2014 Aug.
Article en En | MEDLINE | ID: mdl-24842925
ABSTRACT
Mycobacterium tuberculosis persistence within its human host requires mechanisms to resist the effector molecules of host immunity, which exert their bactericidal effects through damaging pathogen proteins, membranes, and DNA. Substantial evidence indicates that bacterial pathogens, including M. tuberculosis, require DNA repair systems to repair the DNA damage inflicted by the host during infection, but the role of double-strand DNA break (DSB) repair systems is unclear. Double-strand DNA breaks are the most cytotoxic form of DNA damage and must be repaired for chromosome replication to proceed. M. tuberculosis elaborates three genetically distinct DSB repair systems homologous recombination (HR), nonhomologous end joining (NHEJ), and single-strand annealing (SSA). NHEJ, which repairs DSBs in quiescent cells, may be particularly relevant to M. tuberculosis latency. However, very little information is available about the phenotype of DSB repair-deficient M. tuberculosis in animal models of infection. Here we tested M. tuberculosis strains lacking NHEJ (a Δku ΔligD strain), HR (a ΔrecA strain), or both (a ΔrecA Δku strain) in C57BL/6J mice, C3HeB/FeJ mice, guinea pigs, and a mouse hollow-fiber model of infection. We found no difference in bacterial load, histopathology, or host mortality between wild-type and DSB repair mutant strains in any model of infection. These results suggest that the animal models tested do not inflict DSBs on the mycobacterial chromosome, that other repair pathways can compensate for the loss of NHEJ and HR, or that DSB repair is not required for M. tuberculosis pathogenesis.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Contexto en salud: 2_ODS3 Problema de salud: 2_enfermedades_transmissibles Asunto principal: Tuberculosis / Enzimas Reparadoras del ADN / Reparación del ADN / Roturas del ADN de Doble Cadena / Mycobacterium tuberculosis Límite: Animals Idioma: En Revista: Infect Immun Año: 2014 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Contexto en salud: 2_ODS3 Problema de salud: 2_enfermedades_transmissibles Asunto principal: Tuberculosis / Enzimas Reparadoras del ADN / Reparación del ADN / Roturas del ADN de Doble Cadena / Mycobacterium tuberculosis Límite: Animals Idioma: En Revista: Infect Immun Año: 2014 Tipo del documento: Article País de afiliación: Estados Unidos
...