Your browser doesn't support javascript.
loading
Fluorescence in rhoda- and iridacyclopentadienes neglecting the spin-orbit coupling of the heavy atom: the ligand dominates.
Steffen, Andreas; Costuas, Karine; Boucekkine, Abdou; Thibault, Marie-Hélène; Beeby, Andrew; Batsanov, Andrei S; Charaf-Eddin, Azzam; Jacquemin, Denis; Halet, Jean-François; Marder, Todd B.
Afiliación
  • Steffen A; Institut für Anorganische Chemie, Universität Würzburg , Am Hubland, 97074 Würzburg, Germany.
Inorg Chem ; 53(13): 7055-69, 2014 Jul 07.
Article en En | MEDLINE | ID: mdl-24921971
ABSTRACT
We present a detailed photophysical study and theoretical analysis of 2,5-bis(arylethynyl)rhodacyclopenta-2,4-dienes (1a­c and 2a­c) and a 2,5-bis(arylethynyl)iridacyclopenta-2,4-diene (3). Despite the presence of heavy atoms, these systems display unusually intense fluorescence from the S1 excited state and no phosphorescence from T1. The S1 → T1 intersystem crossing (ISC) is remarkably slow with a rate constant of 108 s­1 (i.e., on the nanosecond time scale). Traditionally, for organometallic systems bearing 4d or 5d metals, ISC is 2­3 orders of magnitude faster. Emission lifetime measurements suggest that the title compounds undergo S1 → T1 interconversion mainly via a thermally activated ISC channel above 233 K. The associated experimental activation energy is found to be ΔHISC = 28 kJ mol­1 (2340 cm­1) for 1a, which is supported by density functional theory (DFT) and time-dependent DFT calculations [ΔHISC(calc.) = 11 kJ mol­1 (920 cm­1) for 1a-H]. However, below 233 K a second, temperature-independent ISC process via spin­orbit coupling occurs. The calculated lifetime for this S1 → T1 ISC process is 1.1 s, indicating that although this is the main path for triplet state formation upon photoexcitation in common organometallic luminophores, it plays a minor role in our Rh compounds. Thus, the organic π-chromophore ligand seems to neglect the presence of the heavy rhodium or iridium atom, winning control over the excited-state photophysical behavior. This is attributed to a large energy separation of the ligand-centered highest occupied molecular orbital (HOMO) and lowest unoccupied MO (LUMO) from the metal-centered orbitals. The lowest excited states S1 and T1 arise exclusively from a HOMO-to-LUMO transition. The weak metal participation and the cumulenic distortion of the T1 state associated with a large S1­T1 energy separation favor an "organic-like" photophysical behavior.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Inorg Chem Año: 2014 Tipo del documento: Article País de afiliación: Alemania

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Inorg Chem Año: 2014 Tipo del documento: Article País de afiliación: Alemania
...