Your browser doesn't support javascript.
loading
Self-generated movements with "unexpected" sensory consequences.
Tiriac, Alexandre; Del Rio-Bermudez, Carlos; Blumberg, Mark S.
Afiliación
  • Tiriac A; Department of Psychology, University of Iowa, Iowa City, IA 52242, USA; Delta Center, University of Iowa, Iowa City, IA 52242, USA.
  • Del Rio-Bermudez C; Department of Psychology, University of Iowa, Iowa City, IA 52242, USA.
  • Blumberg MS; Department of Psychology, University of Iowa, Iowa City, IA 52242, USA; Delta Center, University of Iowa, Iowa City, IA 52242, USA; Department of Biology, University of Iowa, Iowa City, IA 52242, USA. Electronic address: mark-blumberg@uiowa.edu.
Curr Biol ; 24(18): 2136-2141, 2014 Sep 22.
Article en En | MEDLINE | ID: mdl-25131675
The nervous systems of diverse species, including worms and humans, possess mechanisms for distinguishing between sensations arising from self-generated (i.e., expected) movements from those arising from other-generated (i.e., unexpected) movements [1-3]. To make this critical distinction, animals generate copies, or corollary discharges, of motor commands [4, 5]. Corollary discharge facilitates the selective gating of reafferent signals arising from self-generated movements, thereby enhancing detection of novel stimuli [6-10]. However, for a developing nervous system, such sensory gating would be counterproductive if it impedes transmission of the very activity upon which activity-dependent mechanisms depend [11]. In infant rats during active (or REM) sleep--a behavioral state that predominates in early infancy [12-16]--neural circuits within the brainstem [17, 18] trigger hundreds of thousands of myoclonic twitches each day [19]. The putative contribution of these self-generated movements to the activity-dependent development of the sensorimotor system is supported by the observation that reafference from twitching limbs reliably and substantially triggers brain activity [20-23]. In contrast, under identical testing conditions, even the most vigorous wake movements reliably fail to trigger reafferent brain activity [21-23]. One hypothesis that accounts for this paradox is that twitches, uniquely among self-generated movements, lack corollary discharge [23]. Here, we test this hypothesis in newborn rats by manipulating the degree to which self-generated movements are expected and, therefore, their presumed recruitment of corollary discharge. We show that twitches, although self-generated, are processed as if they are unexpected.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Propiocepción / Sueño REM / Transducción de Señal / Corteza Motora / Movimiento Límite: Animals Idioma: En Revista: Curr Biol Asunto de la revista: BIOLOGIA Año: 2014 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Propiocepción / Sueño REM / Transducción de Señal / Corteza Motora / Movimiento Límite: Animals Idioma: En Revista: Curr Biol Asunto de la revista: BIOLOGIA Año: 2014 Tipo del documento: Article País de afiliación: Estados Unidos
...