Your browser doesn't support javascript.
loading
The effect of sulforaphane on histone deacetylase activity in keratinocytes: Differences between in vitro and in vivo analyses.
Dickinson, Sally E; Rusche, Jadrian J; Bec, Sergiu L; Horn, David J; Janda, Jaroslav; Rim, So Hyun; Smith, Catharine L; Bowden, G Timothy.
Afiliación
  • Dickinson SE; The University of Arizona Cancer Center, The University of Arizona, Tucson, Arizona.
  • Rusche JJ; Department of Pharmacology, The University of Arizona, Tucson, Arizona.
  • Bec SL; The University of Arizona Cancer Center, The University of Arizona, Tucson, Arizona.
  • Horn DJ; The University of Arizona Cancer Center, The University of Arizona, Tucson, Arizona.
  • Janda J; The University of Arizona Cancer Center, The University of Arizona, Tucson, Arizona.
  • Rim SH; The University of Arizona Cancer Center, The University of Arizona, Tucson, Arizona.
  • Smith CL; The University of Arizona Cancer Center, The University of Arizona, Tucson, Arizona.
  • Bowden GT; Department of Pharmacology and Toxicology, The University of Arizona, Tucson, Arizona.
Mol Carcinog ; 54(11): 1513-20, 2015 11.
Article en En | MEDLINE | ID: mdl-25307283
ABSTRACT
Sulforaphane is a natural product found in broccoli, which is known to exert many different molecular effects in the cell, including inhibition of histone deacetylase (HDAC) enzymes. Here, we examine for the first time the potential for sulforaphane to inhibit HDACs in HaCaT keratinocytes and compare our results with those found using HCT116 colon cancer cells. Significant inhibition of HDAC activity in HCT116 nuclear extracts required prolonged exposure to sulforaphane in the presence of serum. Under the same conditions HaCaT nuclear extracts did not exhibit reduced HDAC activity with sulforaphane treatment. Both cell types displayed down-regulation of HDAC protein levels by sulforaphane treatment. Despite these reductions in HDAC family member protein levels, acetylation of marker proteins (acetylated Histone H3, H4, and tubulin) was decreased by sulforaphane treatment. Time-course analysis revealed that HDAC6, HDAC3, and acetylated histone H3 protein levels are significantly inhibited as early as 6 h into sulforaphane treatment. Transcript levels of HDAC6 are also suppressed after 48 h of treatment. These results suggest that HDAC activity noted in nuclear extracts is not always translated as expected to target protein acetylation patterns, despite dramatic inhibition of some HDAC protein levels. In addition, our data suggest that keratinocytes are at least partially resistant to the nuclear HDAC inhibitory effects of sulforaphane, which is exhibited in HCT116 and other cells.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Anticarcinógenos / Isotiocianatos / Inhibidores de Histona Desacetilasas / Histona Desacetilasas Límite: Humans Idioma: En Revista: Mol Carcinog Asunto de la revista: BIOLOGIA MOLECULAR / NEOPLASIAS Año: 2015 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Anticarcinógenos / Isotiocianatos / Inhibidores de Histona Desacetilasas / Histona Desacetilasas Límite: Humans Idioma: En Revista: Mol Carcinog Asunto de la revista: BIOLOGIA MOLECULAR / NEOPLASIAS Año: 2015 Tipo del documento: Article
...