The major cystic fibrosis causing mutation exhibits defective propensity for phosphorylation.
Proteomics
; 15(2-3): 447-61, 2015 Jan.
Article
en En
| MEDLINE
| ID: mdl-25330774
The major cystic fibrosis causing mutation, F508del-CFTR (where CFTR is cystic fibrosis transmembrane conductance regulator), impairs biosynthetic maturation of the CFTR protein, limiting its expression as a phosphorylation-dependent channel on the cell surface. The maturation defect can be partially rescued by low-temperature (27°C) cell culture conditions or small-molecule corrector compounds. Following its partial rescue, the open probability of F508del-CFTR is enhanced by the potentiator compound, VX-770. However, the channel activity of rescued F508del-CFTR remains less than that of the Wt-CFTR protein in the presence of VX-770. In this study, we asked if there are allosteric effects of F508del on the phosphorylation-regulated R domain. To identify defects in the R domain, we compared the phosphorylation status at protein kinase A sites in the R domain of Wt and F508del-CFTR. Here we show that phosphorylation of Ser-660, quantified by SRM-MS, is reduced in F508del-CFTR. Although the generation of a phosphomimic at this site (substituting aspartic acid for serine) did not modify the maturation defect, it did enhance F508del-CFTR channel function after pharmacological rescue with corrector VX-809, and treatment with the potentiator, VX-770. These findings support the concept that defective phosphorylation of F508del-CFTR partially accounts for its altered channel activity at the cell surface.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Regulador de Conductancia de Transmembrana de Fibrosis Quística
/
Fibrosis Quística
Tipo de estudio:
Prognostic_studies
Límite:
Animals
/
Humans
Idioma:
En
Revista:
Proteomics
Asunto de la revista:
BIOQUIMICA
Año:
2015
Tipo del documento:
Article
País de afiliación:
Canadá