Your browser doesn't support javascript.
loading
Impeding the interaction between Nur77 and p38 reduces LPS-induced inflammation.
Li, Li; Liu, Yuan; Chen, Hang-zi; Li, Feng-wei; Wu, Jian-feng; Zhang, Hong-kui; He, Jian-ping; Xing, Yong-zhen; Chen, Yan; Wang, Wei-jia; Tian, Xu-yang; Li, An-zhong; Zhang, Qian; Huang, Pei-qiang; Han, Jiahuai; Lin, Tianwei; Wu, Qiao.
Afiliación
  • Li L; State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, State-Province Joint Engineering Laboratory of Targeted Drugs from Natural Products, School of Life Sciences, Xiamen University, Xiamen, Fujian Province, China.
  • Liu Y; State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, State-Province Joint Engineering Laboratory of Targeted Drugs from Natural Products, School of Life Sciences, Xiamen University, Xiamen, Fujian Province, China.
  • Chen HZ; State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, State-Province Joint Engineering Laboratory of Targeted Drugs from Natural Products, School of Life Sciences, Xiamen University, Xiamen, Fujian Province, China.
  • Li FW; State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, State-Province Joint Engineering Laboratory of Targeted Drugs from Natural Products, School of Life Sciences, Xiamen University, Xiamen, Fujian Province, China.
  • Wu JF; State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, State-Province Joint Engineering Laboratory of Targeted Drugs from Natural Products, School of Life Sciences, Xiamen University, Xiamen, Fujian Province, China.
  • Zhang HK; Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian Province, China.
  • He JP; State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, State-Province Joint Engineering Laboratory of Targeted Drugs from Natural Products, School of Life Sciences, Xiamen University, Xiamen, Fujian Province, China.
  • Xing YZ; State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, State-Province Joint Engineering Laboratory of Targeted Drugs from Natural Products, School of Life Sciences, Xiamen University, Xiamen, Fujian Province, China.
  • Chen Y; State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, State-Province Joint Engineering Laboratory of Targeted Drugs from Natural Products, School of Life Sciences, Xiamen University, Xiamen, Fujian Province, China.
  • Wang WJ; State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, State-Province Joint Engineering Laboratory of Targeted Drugs from Natural Products, School of Life Sciences, Xiamen University, Xiamen, Fujian Province, China.
  • Tian XY; State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, State-Province Joint Engineering Laboratory of Targeted Drugs from Natural Products, School of Life Sciences, Xiamen University, Xiamen, Fujian Province, China.
  • Li AZ; State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, State-Province Joint Engineering Laboratory of Targeted Drugs from Natural Products, School of Life Sciences, Xiamen University, Xiamen, Fujian Province, China.
  • Zhang Q; State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, State-Province Joint Engineering Laboratory of Targeted Drugs from Natural Products, School of Life Sciences, Xiamen University, Xiamen, Fujian Province, China.
  • Huang PQ; Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian Province, China.
  • Han J; State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, State-Province Joint Engineering Laboratory of Targeted Drugs from Natural Products, School of Life Sciences, Xiamen University, Xiamen, Fujian Province, China.
  • Lin T; State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, State-Province Joint Engineering Laboratory of Targeted Drugs from Natural Products, School of Life Sciences, Xiamen University, Xiamen, Fujian Province, China.
  • Wu Q; State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, State-Province Joint Engineering Laboratory of Targeted Drugs from Natural Products, School of Life Sciences, Xiamen University, Xiamen, Fujian Province, China.
Nat Chem Biol ; 11(5): 339-46, 2015 May.
Article en En | MEDLINE | ID: mdl-25822914
ABSTRACT
Sepsis, a hyperinflammatory response that can result in multiple organ dysfunctions, is a leading cause of mortality from infection. Here, we show that orphan nuclear receptor Nur77 (also known as TR3) can enhance resistance to lipopolysaccharide (LPS)-induced sepsis in mice by inhibiting NF-κB activity and suppressing aberrant cytokine production. Nur77 directly associates with p65 to block its binding to the κB element. However, this function of Nur77 is countered by the LPS-activated p38α phosphorylation of Nur77. Dampening the interaction between Nur77 and p38α would favor Nur77 suppression of the hyperinflammatory response. A compound, n-pentyl 2-[3,5-dihydroxy-2-(1-nonanoyl) phenyl]acetate, screened from a Nur77-biased library, blocked the Nur77-p38α interaction by targeting the ligand-binding domain of Nur77 and restored the suppression of the hyperinflammatory response through Nur77 inhibition of NF-κB. This study associates the nuclear receptor with immune homeostasis and implicates a new therapeutic strategy to treat hyperinflammatory responses by targeting a p38α substrate to modulate p38α-regulated functions.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Contexto en salud: 6_ODS3_enfermedades_notrasmisibles Problema de salud: 6_endocrine_disorders Asunto principal: Fenilacetatos / Antiinflamatorios no Esteroideos / Lipopolisacáridos / Proteínas Quinasas p38 Activadas por Mitógenos / Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares / Inflamación Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: Nat Chem Biol Asunto de la revista: BIOLOGIA / QUIMICA Año: 2015 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Contexto en salud: 6_ODS3_enfermedades_notrasmisibles Problema de salud: 6_endocrine_disorders Asunto principal: Fenilacetatos / Antiinflamatorios no Esteroideos / Lipopolisacáridos / Proteínas Quinasas p38 Activadas por Mitógenos / Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares / Inflamación Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: Nat Chem Biol Asunto de la revista: BIOLOGIA / QUIMICA Año: 2015 Tipo del documento: Article País de afiliación: China
...