Your browser doesn't support javascript.
loading
Large-scale chemical similarity networks for target profiling of compounds identified in cell-based chemical screens.
Lo, Yu-Chen; Senese, Silvia; Li, Chien-Ming; Hu, Qiyang; Huang, Yong; Damoiseaux, Robert; Torres, Jorge Z.
Afiliación
  • Lo YC; Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California, United States of America; Program in Bioengineering, University of California, Los Angeles, Los Angeles, California, United States of America.
  • Senese S; Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California, United States of America.
  • Li CM; Drug Studies Unit, Department of Bioengineering & Therapeutic Sciences, University of California, San Francisco, San Francisco, California, United States of America.
  • Hu Q; Institute for Digital Research and Education, University of California, Los Angeles, Los Angeles, California, United States of America.
  • Huang Y; Drug Studies Unit, Department of Bioengineering & Therapeutic Sciences, University of California, San Francisco, San Francisco, California, United States of America.
  • Damoiseaux R; California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California, United States of America.
  • Torres JZ; Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California, United States of America; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California, United States of America; Molecular Biology Institute, University o
PLoS Comput Biol ; 11(3): e1004153, 2015 Mar.
Article en En | MEDLINE | ID: mdl-25826798
Target identification is one of the most critical steps following cell-based phenotypic chemical screens aimed at identifying compounds with potential uses in cell biology and for developing novel disease therapies. Current in silico target identification methods, including chemical similarity database searches, are limited to single or sequential ligand analysis that have limited capabilities for accurate deconvolution of a large number of compounds with diverse chemical structures. Here, we present CSNAP (Chemical Similarity Network Analysis Pulldown), a new computational target identification method that utilizes chemical similarity networks for large-scale chemotype (consensus chemical pattern) recognition and drug target profiling. Our benchmark study showed that CSNAP can achieve an overall higher accuracy (>80%) of target prediction with respect to representative chemotypes in large (>200) compound sets, in comparison to the SEA approach (60-70%). Additionally, CSNAP is capable of integrating with biological knowledge-based databases (Uniprot, GO) and high-throughput biology platforms (proteomic, genetic, etc) for system-wise drug target validation. To demonstrate the utility of the CSNAP approach, we combined CSNAP's target prediction with experimental ligand evaluation to identify the major mitotic targets of hit compounds from a cell-based chemical screen and we highlight novel compounds targeting microtubules, an important cancer therapeutic target. The CSNAP method is freely available and can be accessed from the CSNAP web server (http://services.mbi.ucla.edu/CSNAP/).
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Biología Computacional / Ensayos Analíticos de Alto Rendimiento Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: PLoS Comput Biol Asunto de la revista: BIOLOGIA / INFORMATICA MEDICA Año: 2015 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Biología Computacional / Ensayos Analíticos de Alto Rendimiento Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: PLoS Comput Biol Asunto de la revista: BIOLOGIA / INFORMATICA MEDICA Año: 2015 Tipo del documento: Article País de afiliación: Estados Unidos
...