Your browser doesn't support javascript.
loading
Allele-specific copy-number discovery from whole-genome and whole-exome sequencing.
Wang, WeiBo; Wang, Wei; Sun, Wei; Crowley, James J; Szatkiewicz, Jin P.
Afiliación
  • Wang W; Department of Computer Science, University of North Carolina at Chapel Hill, NC 27599-3175, USA.
  • Wang W; Department of Computer Science, University of California, Los Angeles, CA 90095, USA.
  • Sun W; Department of Biostatistics, University of North Carolina at Chapel Hill, NC 27599-7400, USA.
  • Crowley JJ; Department of Genetics, University of North Carolina at Chapel Hill, NC 27599-7264, USA.
  • Szatkiewicz JP; Department of Genetics, University of North Carolina at Chapel Hill, NC 27599-7264, USA jin_szatkiewicz@med.unc.edu.
Nucleic Acids Res ; 43(14): e90, 2015 Aug 18.
Article en En | MEDLINE | ID: mdl-25883151
Copy-number variants (CNVs) are a major form of genetic variation and a risk factor for various human diseases, so it is crucial to accurately detect and characterize them. It is conceivable that allele-specific reads from high-throughput sequencing data could be leveraged to both enhance CNV detection and produce allele-specific copy number (ASCN) calls. Although statistical methods have been developed to detect CNVs using whole-genome sequence (WGS) and/or whole-exome sequence (WES) data, information from allele-specific read counts has not yet been adequately exploited. In this paper, we develop an integrated method, called AS-GENSENG, which incorporates allele-specific read counts in CNV detection and estimates ASCN using either WGS or WES data. To evaluate the performance of AS-GENSENG, we conducted extensive simulations, generated empirical data using existing WGS and WES data sets and validated predicted CNVs using an independent methodology. We conclude that AS-GENSENG not only predicts accurate ASCN calls but also improves the accuracy of total copy number calls, owing to its unique ability to exploit information from both total and allele-specific read counts while accounting for various experimental biases in sequence data. Our novel, user-friendly and computationally efficient method and a complete analytic protocol is freely available at https://sourceforge.net/projects/asgenseng/.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Análisis de Secuencia de ADN / Alelos / Variaciones en el Número de Copia de ADN / Secuenciación de Nucleótidos de Alto Rendimiento / Exoma Tipo de estudio: Prognostic_studies / Risk_factors_studies Límite: Humans Idioma: En Revista: Nucleic Acids Res Año: 2015 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Análisis de Secuencia de ADN / Alelos / Variaciones en el Número de Copia de ADN / Secuenciación de Nucleótidos de Alto Rendimiento / Exoma Tipo de estudio: Prognostic_studies / Risk_factors_studies Límite: Humans Idioma: En Revista: Nucleic Acids Res Año: 2015 Tipo del documento: Article País de afiliación: Estados Unidos
...