Your browser doesn't support javascript.
loading
Probable nature of higher-dimensional symmetries underlying mammalian grid-cell activity patterns.
Mathis, Alexander; Stemmler, Martin B; Herz, Andreas Vm.
Afiliación
  • Mathis A; Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States.
  • Stemmler MB; Bernstein Center for Computational Neuroscience, , , Germany.
  • Herz AV; Bernstein Center for Computational Neuroscience, , , Germany.
Elife ; 42015 Apr 24.
Article en En | MEDLINE | ID: mdl-25910055
ABSTRACT
Lattices abound in nature-from the crystal structure of minerals to the honey-comb organization of ommatidia in the compound eye of insects. These arrangements provide solutions for optimal packings, efficient resource distribution, and cryptographic protocols. Do lattices also play a role in how the brain represents information? We focus on higher-dimensional stimulus domains, with particular emphasis on neural representations of physical space, and derive which neuronal lattice codes maximize spatial resolution. For mammals navigating on a surface, we show that the hexagonal activity patterns of grid cells are optimal. For species that move freely in three dimensions, a face-centered cubic lattice is best. This prediction could be tested experimentally in flying bats, arboreal monkeys, or marine mammals. More generally, our theory suggests that the brain encodes higher-dimensional sensory or cognitive variables with populations of grid-cell-like neurons whose activity patterns exhibit lattice structures at multiple, nested scales.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Percepción Espacial / Adaptación Biológica / Navegación Espacial / Mamíferos / Modelos Neurológicos Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: Elife Año: 2015 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Percepción Espacial / Adaptación Biológica / Navegación Espacial / Mamíferos / Modelos Neurológicos Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: Elife Año: 2015 Tipo del documento: Article País de afiliación: Estados Unidos
...