Your browser doesn't support javascript.
loading
A Perspective on Studying G-Protein-Coupled Receptor Signaling with Resonance Energy Transfer Biosensors in Living Organisms.
van Unen, Jakobus; Woolard, Jeanette; Rinken, Ago; Hoffmann, Carsten; Hill, Stephen J; Goedhart, Joachim; Bruchas, Michael R; Bouvier, Michel; Adjobo-Hermans, Merel J W.
Afiliación
  • van Unen J; Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands (M.J.W.A.-H.); Department of Biochemistry, Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Quebec, Canada (M.B.); Department of A
  • Woolard J; Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands (M.J.W.A.-H.); Department of Biochemistry, Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Quebec, Canada (M.B.); Department of A
  • Rinken A; Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands (M.J.W.A.-H.); Department of Biochemistry, Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Quebec, Canada (M.B.); Department of A
  • Hoffmann C; Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands (M.J.W.A.-H.); Department of Biochemistry, Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Quebec, Canada (M.B.); Department of A
  • Hill SJ; Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands (M.J.W.A.-H.); Department of Biochemistry, Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Quebec, Canada (M.B.); Department of A
  • Goedhart J; Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands (M.J.W.A.-H.); Department of Biochemistry, Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Quebec, Canada (M.B.); Department of A
  • Bruchas MR; Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands (M.J.W.A.-H.); Department of Biochemistry, Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Quebec, Canada (M.B.); Department of A
  • Bouvier M; Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands (M.J.W.A.-H.); Department of Biochemistry, Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Quebec, Canada (M.B.); Department of A
  • Adjobo-Hermans MJ; Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands (M.J.W.A.-H.); Department of Biochemistry, Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Quebec, Canada (M.B.); Department of A
Mol Pharmacol ; 88(3): 589-95, 2015 Sep.
Article en En | MEDLINE | ID: mdl-25972446
ABSTRACT
The last frontier for a complete understanding of G-protein-coupled receptor (GPCR) biology is to be able to assess GPCR activity, interactions, and signaling in vivo, in real time within biologically intact systems. This includes the ability to detect GPCR activity, trafficking, dimerization, protein-protein interactions, second messenger production, and downstream signaling events with high spatial resolution and fast kinetic readouts. Resonance energy transfer (RET)-based biosensors allow for all of these possibilities in vitro and in cell-based assays, but moving RET into intact animals has proven difficult. Here, we provide perspectives on the optimization of biosensor design, of signal detection in living organisms, and the multidisciplinary development of in vitro and cell-based assays that more appropriately reflect the physiologic situation. In short, further development of RET-based probes, optical microscopy techniques, and mouse genome editing hold great potential over the next decade to bring real-time in vivo GPCR imaging to the forefront of pharmacology.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Técnicas Biosensibles / Transducción de Señal / Transferencia Resonante de Energía de Fluorescencia / Receptores Acoplados a Proteínas G Límite: Animals Idioma: En Revista: Mol Pharmacol Año: 2015 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Técnicas Biosensibles / Transducción de Señal / Transferencia Resonante de Energía de Fluorescencia / Receptores Acoplados a Proteínas G Límite: Animals Idioma: En Revista: Mol Pharmacol Año: 2015 Tipo del documento: Article
...