Your browser doesn't support javascript.
loading
A zero density change phase change memory material: GeTe-O structural characteristics upon crystallisation.
Zhou, Xilin; Dong, Weiling; Zhang, Hao; Simpson, Robert E.
Afiliación
  • Zhou X; Singapore University of Technology and Design, 8 Somapah Road, Singapore, 487372.
  • Dong W; Singapore University of Technology and Design, 8 Somapah Road, Singapore, 487372.
  • Zhang H; Singapore University of Technology and Design, 8 Somapah Road, Singapore, 487372.
  • Simpson RE; Singapore University of Technology and Design, 8 Somapah Road, Singapore, 487372.
Sci Rep ; 5: 11150, 2015 Jun 11.
Article en En | MEDLINE | ID: mdl-26068587
Oxygen-doped germanium telluride phase change materials are proposed for high temperature applications. Up to 8 at.% oxygen is readily incorporated into GeTe, causing an increased crystallisation temperature and activation energy. The rhombohedral structure of the GeTe crystal is preserved in the oxygen doped films. For higher oxygen concentrations the material is found to phase separate into GeO2 and TeO2, which inhibits the technologically useful abrupt change in properties. Increasing the oxygen content in GeTe-O reduces the difference in film thickness and mass density between the amorphous and crystalline states. For oxygen concentrations between 5 and 6 at.%, the amorphous material and the crystalline material have the same density. Above 6 at.% O doping, crystallisation exhibits an anomalous density change, where the volume of the crystalline state is larger than that of the amorphous. The high thermal stability and zero-density change characteristic of Oxygen-incorporated GeTe, is recommended for efficient and low stress phase change memory devices that may operate at elevated temperatures.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Sci Rep Año: 2015 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Sci Rep Año: 2015 Tipo del documento: Article
...