Your browser doesn't support javascript.
loading
Boosting thermoelectric efficiency using time-dependent control.
Zhou, Hangbo; Thingna, Juzar; Hänggi, Peter; Wang, Jian-Sheng; Li, Baowen.
Afiliación
  • Zhou H; Department of Physics, National University of Singapore, 117551 Republic of Singapore.
  • Thingna J; NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, 117456 Republic of Singapore.
  • Hänggi P; Institute of Physics, University of Augsburg, Universitätstraße 1, D-86135 Augsburg, Germany.
  • Wang JS; Nanosystems Initiative Munich, Schellingstraße 4, D-80799 München, Germany.
  • Li B; Department of Physics, National University of Singapore, 117551 Republic of Singapore.
Sci Rep ; 5: 14870, 2015 Oct 14.
Article en En | MEDLINE | ID: mdl-26464021
Thermoelectric efficiency is defined as the ratio of power delivered to the load of a device to the rate of heat flow from the source. Till date, it has been studied in presence of thermodynamic constraints set by the Onsager reciprocal relation and the second law of thermodynamics that severely bottleneck the thermoelectric efficiency. In this study, we propose a pathway to bypass these constraints using a time-dependent control and present a theoretical framework to study dynamic thermoelectric transport in the far from equilibrium regime. The presence of a control yields the sought after substantial efficiency enhancement and importantly a significant amount of power supplied by the control is utilised to convert the wasted-heat energy into useful-electric energy. Our findings are robust against nonlinear interactions and suggest that external time-dependent forcing, which can be incorporated with existing devices, provides a beneficial scheme to boost thermoelectric efficiency.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Sci Rep Año: 2015 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Sci Rep Año: 2015 Tipo del documento: Article
...