Your browser doesn't support javascript.
loading
Lack of the programmed death-1 receptor renders host susceptible to enteric microbial infection through impairing the production of the mucosal natural killer cell effector molecules.
Solaymani-Mohammadi, Shahram; Lakhdari, Omar; Minev, Ivelina; Shenouda, Steve; Frey, Blake F; Billeskov, Rolf; Singer, Steven M; Berzofsky, Jay A; Eckmann, Lars; Kagnoff, Martin F.
Afiliación
  • Solaymani-Mohammadi S; *Laboratory of Mucosal Immunology and Department of Medicine, University of California, San Diego, La Jolla, California, USA; Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA; and Department of Biology and Center for Infect
  • Lakhdari O; *Laboratory of Mucosal Immunology and Department of Medicine, University of California, San Diego, La Jolla, California, USA; Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA; and Department of Biology and Center for Infect
  • Minev I; *Laboratory of Mucosal Immunology and Department of Medicine, University of California, San Diego, La Jolla, California, USA; Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA; and Department of Biology and Center for Infect
  • Shenouda S; *Laboratory of Mucosal Immunology and Department of Medicine, University of California, San Diego, La Jolla, California, USA; Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA; and Department of Biology and Center for Infect
  • Frey BF; *Laboratory of Mucosal Immunology and Department of Medicine, University of California, San Diego, La Jolla, California, USA; Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA; and Department of Biology and Center for Infect
  • Billeskov R; *Laboratory of Mucosal Immunology and Department of Medicine, University of California, San Diego, La Jolla, California, USA; Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA; and Department of Biology and Center for Infect
  • Singer SM; *Laboratory of Mucosal Immunology and Department of Medicine, University of California, San Diego, La Jolla, California, USA; Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA; and Department of Biology and Center for Infect
  • Berzofsky JA; *Laboratory of Mucosal Immunology and Department of Medicine, University of California, San Diego, La Jolla, California, USA; Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA; and Department of Biology and Center for Infect
  • Eckmann L; *Laboratory of Mucosal Immunology and Department of Medicine, University of California, San Diego, La Jolla, California, USA; Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA; and Department of Biology and Center for Infect
  • Kagnoff MF; *Laboratory of Mucosal Immunology and Department of Medicine, University of California, San Diego, La Jolla, California, USA; Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA; and Department of Biology and Center for Infect
J Leukoc Biol ; 99(3): 475-82, 2016 Mar.
Article en En | MEDLINE | ID: mdl-26467188
ABSTRACT
The programmed death-1 receptor is expressed on a wide range of immune effector cells, including T cells, natural killer T cells, dendritic cells, macrophages, and natural killer cells. In malignancies and chronic viral infections, increased expression of programmed death-1 by T cells is generally associated with a poor prognosis. However, its role in early host microbial defense at the intestinal mucosa is not well understood. We report that programmed death-1 expression is increased on conventional natural killer cells but not on CD4(+), CD8(+) or natural killer T cells, or CD11b(+) or CD11c(+) macrophages or dendritic cells after infection with the mouse pathogen Citrobacter rodentium. Mice genetically deficient in programmed death-1 or treated with anti-programmed death-1 antibody were more susceptible to acute enteric and systemic infection with Citrobacter rodentium. Wild-type but not programmed death-1-deficient mice infected with Citrobacter rodentium showed significantly increased expression of the conventional mucosal NK cell effector molecules granzyme B and perforin. In contrast, natural killer cells from programmed death-1-deficient mice had impaired expression of those mediators. Consistent with programmed death-1 being important for intracellular expression of natural killer cell effector molecules, mice depleted of natural killer cells and perforin-deficient mice manifested increased susceptibility to acute enteric infection with Citrobacter rodentium. Our findings suggest that increased programmed death-1 signaling pathway expression by conventional natural killer cells promotes host protection at the intestinal mucosa during acute infection with a bacterial gut pathogen by enhancing the expression and production of important effectors of natural killer cell function.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Contexto en salud: 3_ND Problema de salud: 3_neglected_diseases / 3_zoonosis Asunto principal: Células Asesinas Naturales / Citrobacter rodentium / Infecciones por Enterobacteriaceae / Receptor de Muerte Celular Programada 1 / Mucosa Intestinal Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: J Leukoc Biol Año: 2016 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Contexto en salud: 3_ND Problema de salud: 3_neglected_diseases / 3_zoonosis Asunto principal: Células Asesinas Naturales / Citrobacter rodentium / Infecciones por Enterobacteriaceae / Receptor de Muerte Celular Programada 1 / Mucosa Intestinal Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: J Leukoc Biol Año: 2016 Tipo del documento: Article
...