Your browser doesn't support javascript.
loading
Sar1 GTPase Activity Is Regulated by Membrane Curvature.
Hanna, Michael G; Mela, Ioanna; Wang, Lei; Henderson, Robert M; Chapman, Edwin R; Edwardson, J Michael; Audhya, Anjon.
Afiliación
  • Hanna MG; From the Department of Biomolecular Chemistry, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin 53706.
  • Mela I; the Department of Pharmacology, University of Cambridge, Tennis Court Road, CB2 1PD Cambridge, United Kingdom, and.
  • Wang L; From the Department of Biomolecular Chemistry, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin 53706.
  • Henderson RM; the Department of Pharmacology, University of Cambridge, Tennis Court Road, CB2 1PD Cambridge, United Kingdom, and.
  • Chapman ER; the Department of Neuroscience, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin 53705.
  • Edwardson JM; the Department of Pharmacology, University of Cambridge, Tennis Court Road, CB2 1PD Cambridge, United Kingdom, and.
  • Audhya A; From the Department of Biomolecular Chemistry, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin 53706, audhya@wisc.edu.
J Biol Chem ; 291(3): 1014-27, 2016 Jan 15.
Article en En | MEDLINE | ID: mdl-26546679
The majority of biosynthetic secretory proteins initiate their journey through the endomembrane system from specific subdomains of the endoplasmic reticulum. At these locations, coated transport carriers are generated, with the Sar1 GTPase playing a critical role in membrane bending, recruitment of coat components, and nascent vesicle formation. How these events are appropriately coordinated remains poorly understood. Here, we demonstrate that Sar1 acts as the curvature-sensing component of the COPII coat complex and highlight the ability of Sar1 to bind more avidly to membranes of high curvature. Additionally, using an atomic force microscopy-based approach, we further show that the intrinsic GTPase activity of Sar1 is necessary for remodeling lipid bilayers. Consistent with this idea, Sar1-mediated membrane remodeling is dramatically accelerated in the presence of its guanine nucleotide-activating protein (GAP), Sec23-Sec24, and blocked upon addition of guanosine-5'-[(ß,γ)-imido]triphosphate, a poorly hydrolysable analog of GTP. Our results also indicate that Sar1 GTPase activity is stimulated by membranes that exhibit elevated curvature, potentially enabling Sar1 membrane scission activity to be spatially restricted to highly bent membranes that are characteristic of a bud neck. Taken together, our data support a stepwise model in which the amino-terminal amphipathic helix of GTP-bound Sar1 stably penetrates the endoplasmic reticulum membrane, promoting local membrane deformation. As membrane bending increases, Sar1 membrane binding is elevated, ultimately culminating in GTP hydrolysis, which may destabilize the bilayer sufficiently to facilitate membrane fission.
Asunto(s)
Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo; Proteínas de Caenorhabditis elegans/metabolismo; Caenorhabditis elegans/fisiología; Retículo Endoplásmico/metabolismo; GTP Fosfohidrolasas/metabolismo; Guanosina Trifosfato/metabolismo; Modelos Biológicos; Proteínas de Unión al GTP Monoméricas/metabolismo; Sustitución de Aminoácidos; Animales; Vesículas Cubiertas por Proteínas de Revestimiento/efectos de los fármacos; Vesículas Cubiertas por Proteínas de Revestimiento/ultraestructura; Caenorhabditis elegans/efectos de los fármacos; Caenorhabditis elegans/enzimología; Caenorhabditis elegans/ultraestructura; Proteínas de Caenorhabditis elegans/antagonistas & inhibidores; Proteínas de Caenorhabditis elegans/química; Proteínas de Caenorhabditis elegans/genética; Retículo Endoplásmico/ultraestructura; Inhibidores Enzimáticos/farmacología; GTP Fosfohidrolasas/antagonistas & inhibidores; GTP Fosfohidrolasas/química; GTP Fosfohidrolasas/genética; Proteínas Activadoras de GTPasa/antagonistas & inhibidores; Proteínas Activadoras de GTPasa/genética; Proteínas Activadoras de GTPasa/metabolismo; Guanilil Imidodifosfato/farmacología; Humanos; Membrana Dobles de Lípidos/química; Membrana Dobles de Lípidos/metabolismo; Microdominios de Membrana/efectos de los fármacos; Microdominios de Membrana/metabolismo; Microdominios de Membrana/ultraestructura; Microscopía de Fuerza Atómica; Proteínas de Unión al GTP Monoméricas/antagonistas & inhibidores; Proteínas de Unión al GTP Monoméricas/química; Proteínas de Unión al GTP Monoméricas/genética; Mutación; Forma de los Orgánulos/efectos de los fármacos; Interferencia de ARN; Proteínas Tirosina Quinasas Receptoras/genética; Proteínas Tirosina Quinasas Receptoras/metabolismo; Proteínas Recombinantes/química; Proteínas Recombinantes/metabolismo; Proteínas de Transporte Vesicular/antagonistas & inhibidores; Proteínas de Transporte Vesicular/genética; Proteínas de Transporte Vesicular/metabolismo; Proteínas Activadoras de ras GTPasa/genética; Proteínas Activadoras de ras GTPasa/metabolismo
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Caenorhabditis elegans / Proteínas de Unión al GTP Monoméricas / Vesículas Cubiertas por Proteínas de Revestimiento / Proteínas de Caenorhabditis elegans / Retículo Endoplásmico / GTP Fosfohidrolasas / Guanosina Trifosfato / Modelos Biológicos Tipo de estudio: Prognostic_studies Idioma: En Revista: J Biol Chem Año: 2016 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Caenorhabditis elegans / Proteínas de Unión al GTP Monoméricas / Vesículas Cubiertas por Proteínas de Revestimiento / Proteínas de Caenorhabditis elegans / Retículo Endoplásmico / GTP Fosfohidrolasas / Guanosina Trifosfato / Modelos Biológicos Tipo de estudio: Prognostic_studies Idioma: En Revista: J Biol Chem Año: 2016 Tipo del documento: Article
...