Your browser doesn't support javascript.
loading
Mechanism of Thermal Adaptation in the Lactate Dehydrogenases.
Peng, Huo-Lei; Egawa, Tsuyoshi; Chang, Eric; Deng, Hua; Callender, Robert.
Afiliación
  • Peng HL; Department of Biochemistry, Albert Einstein College of Medicine , Bronx, New York 10461, United States.
  • Egawa T; Department of Biochemistry, Albert Einstein College of Medicine , Bronx, New York 10461, United States.
  • Chang E; Department of Biochemistry, Albert Einstein College of Medicine , Bronx, New York 10461, United States.
  • Deng H; Department of Biochemistry, Albert Einstein College of Medicine , Bronx, New York 10461, United States.
  • Callender R; Department of Biochemistry, Albert Einstein College of Medicine , Bronx, New York 10461, United States.
J Phys Chem B ; 119(49): 15256-62, 2015 Dec 10.
Article en En | MEDLINE | ID: mdl-26556099
ABSTRACT
The mechanism of thermal adaptation of enzyme function at the molecular level is poorly understood but is thought to lie within the structure of the protein or its dynamics. Our previous work on pig heart lactate dehydrogenase (phLDH) has determined very high resolution structures of the active site, via isotope edited IR studies, and has characterized its dynamical nature, via laser-induced temperature jump (T-jump) relaxation spectroscopy on the Michaelis complex. These particular probes are quite powerful at getting at the interplay between structure and dynamics in adaptation. Hence, we extend these studies to the psychrophilic protein cgLDH (Champsocephalus gunnari; 0 °C) and the extreme thermophile tmLDH (Thermotoga maritima LDH; 80 °C) for comparison to the mesophile phLDH (38-39 °C). Instead of the native substrate pyruvate, we utilize oxamate as a nonreactive substrate mimic for experimental reasons. Using isotope edited IR spectroscopy, we find small differences in the substate composition that arise from the detailed bonding patterns of oxamate within the active site of the three proteins; however, we find these differences insufficient to explain the mechanism of thermal adaptation. On the other hand, T-jump studies of reduced ß-nicotinamide adenine dinucleotide (NADH) emission reveal that the most important parameter affecting thermal adaptation appears to be enzyme control of the specific kinetics and dynamics of protein motions that lie along the catalytic pathway. The relaxation rate of the motions scale as cgLDH > phLDH > tmLDH in a way that faithfully matches kcat of the three isozymes.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Adaptación Fisiológica / L-Lactato Deshidrogenasa Límite: Animals Idioma: En Revista: J Phys Chem B Asunto de la revista: QUIMICA Año: 2015 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Adaptación Fisiológica / L-Lactato Deshidrogenasa Límite: Animals Idioma: En Revista: J Phys Chem B Asunto de la revista: QUIMICA Año: 2015 Tipo del documento: Article País de afiliación: Estados Unidos
...