Your browser doesn't support javascript.
loading
Dynamic Proteomic Characteristics and Network Integration Revealing Key Proteins for Two Kernel Tissue Developments in Popcorn.
Dong, Yongbin; Wang, Qilei; Zhang, Long; Du, Chunguang; Xiong, Wenwei; Chen, Xinjian; Deng, Fei; Ma, Zhiyan; Qiao, Dahe; Hu, Chunhui; Ren, Yangliu; Li, Yuling.
Afiliación
  • Dong Y; College of Agronomy, Henan Agricultural University, Collaborative Innovation Center of Henan Grain Crops, National Key Laboratory of Wheat and Maize Crop Science, 63 Nongye Rd, Zhengzhou, China.
  • Wang Q; College of Agronomy, Henan Agricultural University, Collaborative Innovation Center of Henan Grain Crops, National Key Laboratory of Wheat and Maize Crop Science, 63 Nongye Rd, Zhengzhou, China.
  • Zhang L; College of Agronomy, Henan Agricultural University, Collaborative Innovation Center of Henan Grain Crops, National Key Laboratory of Wheat and Maize Crop Science, 63 Nongye Rd, Zhengzhou, China.
  • Du C; Deptment of Biology and Molecular Biology, Montclair State University, Montclair, NJ 07043, United States of America.
  • Xiong W; Deptment of Biology and Molecular Biology, Montclair State University, Montclair, NJ 07043, United States of America.
  • Chen X; College of Life Sciences, Henan Agricultural University, 63 Nongye Rd, Zhengzhou, China.
  • Deng F; College of Agronomy, Henan Agricultural University, Collaborative Innovation Center of Henan Grain Crops, National Key Laboratory of Wheat and Maize Crop Science, 63 Nongye Rd, Zhengzhou, China.
  • Ma Z; College of Agronomy, Henan Agricultural University, Collaborative Innovation Center of Henan Grain Crops, National Key Laboratory of Wheat and Maize Crop Science, 63 Nongye Rd, Zhengzhou, China.
  • Qiao D; College of Agronomy, Henan Agricultural University, Collaborative Innovation Center of Henan Grain Crops, National Key Laboratory of Wheat and Maize Crop Science, 63 Nongye Rd, Zhengzhou, China.
  • Hu C; College of Agronomy, Henan Agricultural University, Collaborative Innovation Center of Henan Grain Crops, National Key Laboratory of Wheat and Maize Crop Science, 63 Nongye Rd, Zhengzhou, China.
  • Ren Y; College of Agronomy, Henan Agricultural University, Collaborative Innovation Center of Henan Grain Crops, National Key Laboratory of Wheat and Maize Crop Science, 63 Nongye Rd, Zhengzhou, China.
  • Li Y; College of Agronomy, Henan Agricultural University, Collaborative Innovation Center of Henan Grain Crops, National Key Laboratory of Wheat and Maize Crop Science, 63 Nongye Rd, Zhengzhou, China.
PLoS One ; 10(11): e0143181, 2015.
Article en En | MEDLINE | ID: mdl-26587848
ABSTRACT
The formation and development of maize kernel is a complex dynamic physiological and biochemical process that involves the temporal and spatial expression of many proteins and the regulation of metabolic pathways. In this study, the protein profiles of the endosperm and pericarp at three important developmental stages were analyzed by isobaric tags for relative and absolute quantification (iTRAQ) labeling coupled with LC-MS/MS in popcorn inbred N04. Comparative quantitative proteomic analyses among developmental stages and between tissues were performed, and the protein networks were integrated. A total of 6,876 proteins were identified, of which 1,396 were nonredundant. Specific proteins and different expression patterns were observed across developmental stages and tissues. The functional annotation of the identified proteins revealed the importance of metabolic and cellular processes, and binding and catalytic activities for the development of the tissues. The whole, endosperm-specific and pericarp-specific protein networks integrated 125, 9 and 77 proteins, respectively, which were involved in 54 KEGG pathways and reflected their complex metabolic interactions. Confirmation for the iTRAQ endosperm proteins by two-dimensional gel electrophoresis showed that 44.44% proteins were commonly found. However, the concordance between mRNA level and the protein abundance varied across different proteins, stages, tissues and inbred lines, according to the gene cloning and expression analyses of four relevant proteins with important functions and different expression levels. But the result by western blot showed their same expression tendency for the four proteins as by iTRAQ. These results could provide new insights into the developmental mechanisms of endosperm and pericarp, and grain formation in maize.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Proteínas de Plantas / Semillas / Regulación de la Expresión Génica de las Plantas / Zea mays / Proteoma Tipo de estudio: Prognostic_studies Idioma: En Revista: PLoS One Asunto de la revista: CIENCIA / MEDICINA Año: 2015 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Proteínas de Plantas / Semillas / Regulación de la Expresión Génica de las Plantas / Zea mays / Proteoma Tipo de estudio: Prognostic_studies Idioma: En Revista: PLoS One Asunto de la revista: CIENCIA / MEDICINA Año: 2015 Tipo del documento: Article País de afiliación: China
...