Your browser doesn't support javascript.
loading
All-Electron Scalar Relativistic Basis Sets for Third-Row Transition Metal Atoms.
Pantazis, Dimitrios A; Chen, Xian-Yang; Landis, Clark R; Neese, Frank.
Afiliación
  • Pantazis DA; Lehrstuhl für Theoretische Chemie, Institut für Physikalische und Theoretische Chemie, Universität Bonn, Wegelerstrasse 12, D-53115 Bonn, Germany, and Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706.
  • Chen XY; Lehrstuhl für Theoretische Chemie, Institut für Physikalische und Theoretische Chemie, Universität Bonn, Wegelerstrasse 12, D-53115 Bonn, Germany, and Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706.
  • Landis CR; Lehrstuhl für Theoretische Chemie, Institut für Physikalische und Theoretische Chemie, Universität Bonn, Wegelerstrasse 12, D-53115 Bonn, Germany, and Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706.
  • Neese F; Lehrstuhl für Theoretische Chemie, Institut für Physikalische und Theoretische Chemie, Universität Bonn, Wegelerstrasse 12, D-53115 Bonn, Germany, and Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706.
J Chem Theory Comput ; 4(6): 908-19, 2008 Jun.
Article en En | MEDLINE | ID: mdl-26621232
ABSTRACT
A family of segmented all-electron relativistically contracted (SARC) basis sets for the elements Hf-Hg is constructed for use in conjunction with the Douglas-Kroll-Hess (DKH) and zeroth-order regular approximation (ZORA) scalar relativistic Hamiltonians. The SARC basis sets are loosely contracted and thus offer computational advantages compared to generally contracted relativistic basis sets, while their sufficiently small size allows them to be used in place of effective core potentials (ECPs) for routine studies of molecules. Practical assessments of the SARC basis sets in DFT calculations of atomic (ionization energies) as well as molecular properties (geometries and bond dissociation energies for MHn complexes) confirm that the basis sets yield accurate and reliable results, providing a balanced description of core and valence electron densities. CCSD(T) calculations on a series of gold diatomic compounds also demonstrate the applicability of the basis sets to correlated methods. The SARC basis sets will be of most utility in calculating molecular properties for which the core electrons cannot be neglected, such as studies of electron paramagnetic resonance, Mössbauer and X-ray absorption spectra, and topological analysis of electron densities.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: J Chem Theory Comput Año: 2008 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: J Chem Theory Comput Año: 2008 Tipo del documento: Article
...