Whole-brain activity mapping onto a zebrafish brain atlas.
Nat Methods
; 12(11): 1039-46, 2015 Nov.
Article
en En
| MEDLINE
| ID: mdl-26778924
In order to localize the neural circuits involved in generating behaviors, it is necessary to assign activity onto anatomical maps of the nervous system. Using brain registration across hundreds of larval zebrafish, we have built an expandable open-source atlas containing molecular labels and definitions of anatomical regions, the Z-Brain. Using this platform and immunohistochemical detection of phosphorylated extracellular signalregulated kinase (ERK) as a readout of neural activity, we have developed a system to create and contextualize whole-brain maps of stimulus- and behavior-dependent neural activity. This mitogen-activated protein kinase (MAP)-mapping assay is technically simple, and data analysis is completely automated. Because MAP-mapping is performed on freely swimming fish, it is applicable to studies of nearly any stimulus or behavior. Here we demonstrate our high-throughput approach using pharmacological, visual and noxious stimuli, as well as hunting and feeding. The resultant maps outline hundreds of areas associated with behaviors.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Procesamiento de Imagen Asistido por Computador
/
Encéfalo
/
Neuritas
/
Quinasas MAP Reguladas por Señal Extracelular
Límite:
Animals
Idioma:
En
Revista:
Nat Methods
Asunto de la revista:
TECNICAS E PROCEDIMENTOS DE LABORATORIO
Año:
2015
Tipo del documento:
Article