Fluid-induced, shear stress-regulated extracellular matrix and matrix metalloproteinase genes expression on human annulus fibrosus cells.
Stem Cell Res Ther
; 7: 34, 2016 Feb 27.
Article
en En
| MEDLINE
| ID: mdl-26921206
BACKGROUND: Mechanical loading plays an important role in the regulation of extracellular matrix (ECM) homeostasis as well as pathogenesis of intervertebral disc (IVD) degeneration. The human annulus fibrosus (hAF) in the IVD is subjected to contact shear stress during body motion. However, the effects of shear stress on hAF cells remain unclear. This aim of the study was to investigate the expression of the ECM (COLI, COLIII and aggrecan) and matrix metalloproteinase (MMP-1, MMP-3 and ADAMTS-4) genes in hAF cells following fluid-induced shear stress in a custom-fabricated bio-microfluidic device. METHODS: hAF cells were harvested from degenerated disc tissues in routine spine surgery, staged by magnetic resonance imaging, expanded in monolayers and then seeded onto the bio-microfluidic device. The experimental groups were subjected to 1 and 10 dyne/cm(2) shear stress for 4 h, and no shear stress was applied to the control group. We used real time polymerase chain reaction for gene expression. RESULTS: Shear stress of 1 dyne/cm(2) exerted an anabolic effect on COLI and COLIII genes and catabolic effects on the aggrecan gene, while 10 dyne/cm(2) had an anabolic effect on the COLI gene and a catabolic effect on COLIII and aggrecan genes. The COLI gene was upregulated in a stress-dependent manner. Expression of MMP-1 was significantly higher in the 10 dyne/cm(2) group compared to the control group (P < 0.05), but was similar in the control and 1 dyne/cm(2) groups. Expression of MMP-3 and ADAMTS-4 were similar in all three groups. CONCLUSION: Taken together, hAF cells responded to shear stress. The findings help us understand and clarify the effects of shear stress on IVD degeneration as well as the development of a new therapeutic strategy for IVD degeneration.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Matriz Extracelular
Límite:
Female
/
Humans
/
Male
/
Middle aged
Idioma:
En
Revista:
Stem Cell Res Ther
Año:
2016
Tipo del documento:
Article
País de afiliación:
Taiwán