Your browser doesn't support javascript.
loading
Angiopoietin-2-induced blood-brain barrier compromise and increased stroke size are rescued by VE-PTP-dependent restoration of Tie2 signaling.
Gurnik, Stefanie; Devraj, Kavi; Macas, Jadranka; Yamaji, Maiko; Starke, Julia; Scholz, Alexander; Sommer, Kathleen; Di Tacchio, Mariangela; Vutukuri, Rajkumar; Beck, Heike; Mittelbronn, Michel; Foerch, Christian; Pfeilschifter, Waltraud; Liebner, Stefan; Peters, Kevin G; Plate, Karl H; Reiss, Yvonne.
Afiliación
  • Gurnik S; Institute of Neurology (Edinger Institute), Goethe University Medical School, Frankfurt, Germany.
  • Devraj K; Institute of Neurology (Edinger Institute), Goethe University Medical School, Frankfurt, Germany.
  • Macas J; Institute of Neurology (Edinger Institute), Goethe University Medical School, Frankfurt, Germany.
  • Yamaji M; Institute of Neurology (Edinger Institute), Goethe University Medical School, Frankfurt, Germany.
  • Starke J; Institute of Neurology (Edinger Institute), Goethe University Medical School, Frankfurt, Germany.
  • Scholz A; Institute of Neurology (Edinger Institute), Goethe University Medical School, Frankfurt, Germany.
  • Sommer K; Institute of Neurology (Edinger Institute), Goethe University Medical School, Frankfurt, Germany.
  • Di Tacchio M; Institute of Neurology (Edinger Institute), Goethe University Medical School, Frankfurt, Germany.
  • Vutukuri R; Department of Neurology, Goethe University Medical School, Frankfurt, Germany.
  • Beck H; Walter Brendel Centre of Experimental Medicine, Munich Heart Alliance, Ludwig-Maximilians-University, Munich, Germany.
  • Mittelbronn M; Institute of Neurology (Edinger Institute), Goethe University Medical School, Frankfurt, Germany.
  • Foerch C; Department of Neurology, Goethe University Medical School, Frankfurt, Germany.
  • Pfeilschifter W; Department of Neurology, Goethe University Medical School, Frankfurt, Germany.
  • Liebner S; Institute of Neurology (Edinger Institute), Goethe University Medical School, Frankfurt, Germany.
  • Peters KG; Aerpio Therapeutics, Cincinnati, OH, USA.
  • Plate KH; Institute of Neurology (Edinger Institute), Goethe University Medical School, Frankfurt, Germany.
  • Reiss Y; Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK RheinMain), Frankfurt, Germany.
Acta Neuropathol ; 131(5): 753-73, 2016 May.
Article en En | MEDLINE | ID: mdl-26932603
ABSTRACT
The homeostasis of the central nervous system is maintained by the blood-brain barrier (BBB). Angiopoietins (Ang-1/Ang-2) act as antagonizing molecules to regulate angiogenesis, vascular stability, vascular permeability and lymphatic integrity. However, the precise role of angiopoietin/Tie2 signaling at the BBB remains unclear. We investigated the influence of Ang-2 on BBB permeability in wild-type and gain-of-function (GOF) mice and demonstrated an increase in permeability by Ang-2, both in vitro and in vivo. Expression analysis of brain endothelial cells from Ang-2 GOF mice showed a downregulation of tight/adherens junction molecules and increased caveolin-1, a vesicular permeability-related molecule. Immunohistochemistry revealed reduced pericyte coverage in Ang-2 GOF mice that was supported by electron microscopy analyses, which demonstrated defective intra-endothelial junctions with increased vesicles and decreased/disrupted glycocalyx. These results demonstrate that Ang-2 mediates permeability via paracellular and transcellular routes. In patients suffering from stroke, a cerebrovascular disorder associated with BBB disruption, Ang-2 levels were upregulated. In mice, Ang-2 GOF resulted in increased infarct sizes and vessel permeability upon experimental stroke, implicating a role of Ang-2 in stroke pathophysiology. Increased permeability and stroke size were rescued by activation of Tie2 signaling using a vascular endothelial protein tyrosine phosphatase inhibitor and were independent of VE-cadherin phosphorylation. We thus identified Ang-2 as an endothelial cell-derived regulator of BBB permeability. We postulate that novel therapeutics targeting Tie2 signaling could be of potential use for opening the BBB for increased CNS drug delivery or tighten it in neurological disorders associated with cerebrovascular leakage and brain edema.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Barrera Hematoencefálica / Transducción de Señal / Accidente Cerebrovascular / Receptor TIE-2 / Angiopoyetina 2 / Proteínas Tirosina Fosfatasas Clase 3 Similares a Receptores Tipo de estudio: Etiology_studies Idioma: En Revista: Acta Neuropathol Año: 2016 Tipo del documento: Article País de afiliación: Alemania

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Barrera Hematoencefálica / Transducción de Señal / Accidente Cerebrovascular / Receptor TIE-2 / Angiopoyetina 2 / Proteínas Tirosina Fosfatasas Clase 3 Similares a Receptores Tipo de estudio: Etiology_studies Idioma: En Revista: Acta Neuropathol Año: 2016 Tipo del documento: Article País de afiliación: Alemania
...