Your browser doesn't support javascript.
loading
QTL Location and Epistatic Effect Analysis of 100-Seed Weight Using Wild Soybean (Glycine soja Sieb. & Zucc.) Chromosome Segment Substitution Lines.
Xin, Dawei; Qi, Zhaoming; Jiang, Hongwei; Hu, Zhenbang; Zhu, Rongsheng; Hu, Jiahui; Han, Heyu; Hu, Guohua; Liu, Chunyan; Chen, Qingshan.
Afiliación
  • Xin D; Key Laboratory of Soybean Biology of Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry, College of Science, Northeast Agricultural University, Harbin, Heilongjiang Province, People's Republic of China.
  • Qi Z; School of Life Sciences and Center for Soybean Research of the Partner State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, SAR, China.
  • Jiang H; Key Laboratory of Soybean Biology of Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry, College of Science, Northeast Agricultural University, Harbin, Heilongjiang Province, People's Republic of China.
  • Hu Z; Key Laboratory of Soybean Biology of Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry, College of Science, Northeast Agricultural University, Harbin, Heilongjiang Province, People's Republic of China.
  • Zhu R; Land Reclamation Research & Breeding Centre of Heilongjiang, Harbin, Heilongjiang Province, People's Republic of China.
  • Hu J; Key Laboratory of Soybean Biology of Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry, College of Science, Northeast Agricultural University, Harbin, Heilongjiang Province, People's Republic of China.
  • Han H; Key Laboratory of Soybean Biology of Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry, College of Science, Northeast Agricultural University, Harbin, Heilongjiang Province, People's Republic of China.
  • Hu G; Key Laboratory of Soybean Biology of Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry, College of Science, Northeast Agricultural University, Harbin, Heilongjiang Province, People's Republic of China.
  • Liu C; Key Laboratory of Soybean Biology of Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry, College of Science, Northeast Agricultural University, Harbin, Heilongjiang Province, People's Republic of China.
  • Chen Q; Land Reclamation Research & Breeding Centre of Heilongjiang, Harbin, Heilongjiang Province, People's Republic of China.
PLoS One ; 11(3): e0149380, 2016.
Article en En | MEDLINE | ID: mdl-26934088
ABSTRACT
Increasing the yield of soybean (Glycine max L. Merrill) is a main aim of soybean breeding. The 100-seed weight is a critical factor for soybean yield. To facilitate genetic analysis of quantitative traits and to improve the accuracy of marker-assisted breeding in soybean, a valuable mapping population consisting of 194 chromosome segment substitution lines (CSSLs) was developed. In these lines, different chromosomal segments of the Chinese cultivar Suinong 14 were substituted into the genetic background of wild soybean (Glycine soja Sieb. & Zucc.) ZYD00006. Based on these CSSLs, a genetic map covering the full genome was generated using 121 simple sequence repeat (SSR) markers. In the quantitative trait loci (QTL) analysis, twelve main effect QTLs (qSW-B1-1/2/3, qSW-D1b-1/2, qSW-D2-1/2, qSW-G-1/2/3, qSW-M-2 and qSW-N-2) underlying 100-seed weight were identified in 2011 and 2012. The epistatic effects of pairwise interactions between markers were analyzed in 2011 and 2012. The results clearly demonstrated that these CSSLs could be used to identify QTLs, and that an epistatic analysis was able to detect several sites with important epistatic effects on 100-seed weight. Thus, we identified loci that will be valuable for improving soybean 100-seed weight. These results provide a valuable foundation for identifying the precise location of genes of interest, and for designing cloning and marker-assisted selection breeding strategies targeting the 100-seed weight of soybean.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Glycine max / Sitios de Carácter Cuantitativo / Epistasis Genética Tipo de estudio: Prognostic_studies Idioma: En Revista: PLoS One Asunto de la revista: CIENCIA / MEDICINA Año: 2016 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Glycine max / Sitios de Carácter Cuantitativo / Epistasis Genética Tipo de estudio: Prognostic_studies Idioma: En Revista: PLoS One Asunto de la revista: CIENCIA / MEDICINA Año: 2016 Tipo del documento: Article
...