Your browser doesn't support javascript.
loading
Segmenting Brain Tissues from Chinese Visible Human Dataset by Deep-Learned Features with Stacked Autoencoder.
Zhao, Guangjun; Wang, Xuchu; Niu, Yanmin; Tan, Liwen; Zhang, Shao-Xiang.
Afiliación
  • Zhao G; Key Laboratory of Optoelectronic Technology and Systems of Ministry of Education, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China.
  • Wang X; Key Laboratory of Optoelectronic Technology and Systems of Ministry of Education, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China.
  • Niu Y; College of Computer and Information Science, Chongqing Normal University, Chongqing 400050, China.
  • Tan L; Institute of Digital Medicine, College of Biomedical Engineering, Third Military Medical University, Chongqing 400038, China.
  • Zhang SX; Institute of Digital Medicine, College of Biomedical Engineering, Third Military Medical University, Chongqing 400038, China.
Biomed Res Int ; 2016: 5284586, 2016.
Article en En | MEDLINE | ID: mdl-27057543
ABSTRACT
Cryosection brain images in Chinese Visible Human (CVH) dataset contain rich anatomical structure information of tissues because of its high resolution (e.g., 0.167 mm per pixel). Fast and accurate segmentation of these images into white matter, gray matter, and cerebrospinal fluid plays a critical role in analyzing and measuring the anatomical structures of human brain. However, most existing automated segmentation methods are designed for computed tomography or magnetic resonance imaging data, and they may not be applicable for cryosection images due to the imaging difference. In this paper, we propose a supervised learning-based CVH brain tissues segmentation method that uses stacked autoencoder (SAE) to automatically learn the deep feature representations. Specifically, our model includes two successive parts where two three-layer SAEs take image patches as input to learn the complex anatomical feature representation, and then these features are sent to Softmax classifier for inferring the labels. Experimental results validated the effectiveness of our method and showed that it outperformed four other classical brain tissue detection strategies. Furthermore, we reconstructed three-dimensional surfaces of these tissues, which show their potential in exploring the high-resolution anatomical structures of human brain.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Procesamiento de Imagen Asistido por Computador / Encéfalo / Proyectos Humanos Visibles / Aprendizaje Automático Supervisado Límite: Humans Idioma: En Revista: Biomed Res Int Año: 2016 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Procesamiento de Imagen Asistido por Computador / Encéfalo / Proyectos Humanos Visibles / Aprendizaje Automático Supervisado Límite: Humans Idioma: En Revista: Biomed Res Int Año: 2016 Tipo del documento: Article País de afiliación: China
...