Estimation of error rates in discriminant analysis with selection of variables.
Biometrics
; 45(1): 289-99, 1989 Mar.
Article
en En
| MEDLINE
| ID: mdl-2720056
Accurate estimation of misclassification rates in discriminant analysis with selection of variables by, for example, a stepwise algorithm, is complicated by the large optimistic bias inherent in standard estimators such as those obtained by the resubstitution method. Application of a bootstrap adjustment can reduce the bias of the resubstitution method; however, the bootstrap technique requires the variable selection procedure to be repeated many times and is therefore difficult to compute. In this paper we propose a smoothed estimator that requires relatively little computation and which, on the basis of a Monte Carlo sampling study, is found to perform generally at least as well as the bootstrap method.
Buscar en Google
Colección:
01-internacional
Base de datos:
MEDLINE
Contexto en salud:
6_ODS3_enfermedades_notrasmisibles
Problema de salud:
6_other_circulatory_diseases
Asunto principal:
Algoritmos
/
Análisis de Regresión
/
Muestreo
/
Modelos Estadísticos
Tipo de estudio:
Diagnostic_studies
/
Health_economic_evaluation
/
Prognostic_studies
Límite:
Humans
Idioma:
En
Revista:
Biometrics
Año:
1989
Tipo del documento:
Article
País de afiliación:
Bélgica