Tolerance of a Knotted Near-Infrared Fluorescent Protein to Random Circular Permutation.
Biochemistry
; 55(27): 3763-73, 2016 07 12.
Article
en En
| MEDLINE
| ID: mdl-27304983
Bacteriophytochrome photoreceptors (BphP) are knotted proteins that have been developed as near-infrared fluorescent protein (iRFP) reporters of gene expression. To explore how rearrangements in the peptides that interlace into the knot within the BphP photosensory core affect folding, we subjected iRFPs to random circular permutation using an improved transposase mutagenesis strategy and screened for variants that fluoresce. We identified 27 circularly permuted iRFPs that display biliverdin-dependent fluorescence in Escherichia coli. The variants with the brightest whole cell fluorescence initiated translation at residues near the domain linker and knot tails, although fluorescent variants that initiated translation within the PAS and GAF domains were discovered. Circularly permuted iRFPs retained sufficient cofactor affinity to fluoresce in tissue culture without the addition of biliverdin, and one variant displayed enhanced fluorescence when expressed in bacteria and tissue culture. This variant displayed a quantum yield similar to that of iRFPs but exhibited increased resistance to chemical denaturation, suggesting that the observed increase in the magnitude of the signal arose from more efficient protein maturation. These results show how the contact order of a knotted BphP can be altered without disrupting chromophore binding and fluorescence, an important step toward the creation of near-infrared biosensors with expanded chemical sensing functions for in vivo imaging.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Contexto en salud:
3_ND
Problema de salud:
3_neglected_diseases
/
3_zoonosis
Asunto principal:
Fragmentos de Péptidos
/
Fitocromo
/
Proteínas Bacterianas
/
Pliegue de Proteína
/
Espectroscopía Infrarroja Corta
/
Escherichia coli
/
Proteínas Luminiscentes
Tipo de estudio:
Clinical_trials
Límite:
Humans
Idioma:
En
Revista:
Biochemistry
Año:
2016
Tipo del documento:
Article
País de afiliación:
Estados Unidos