Your browser doesn't support javascript.
loading
Long-Term Estrogen Receptor Beta Agonist Treatment Modifies the Hippocampal Transcriptome in Middle-Aged Ovariectomized Rats.
Sárvári, Miklós; Kalló, Imre; Hrabovszky, Erik; Solymosi, Norbert; Rodolosse, Annie; Liposits, Zsolt.
Afiliación
  • Sárvári M; Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences Budapest, Hungary.
  • Kalló I; Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of SciencesBudapest, Hungary; Faculty of Information Technology and Bionics, Pázmány Péter Catholic UniversityBudapest, Hungary.
  • Hrabovszky E; Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences Budapest, Hungary.
  • Solymosi N; Faculty of Veterinary Science, Szent István University Budapest, Hungary.
  • Rodolosse A; Functional Genomics Core, Institute for Research in Biomedicine Barcelona, Spain.
  • Liposits Z; Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of SciencesBudapest, Hungary; Faculty of Information Technology and Bionics, Pázmány Péter Catholic UniversityBudapest, Hungary.
Front Cell Neurosci ; 10: 149, 2016.
Article en En | MEDLINE | ID: mdl-27375434
Estradiol (E2) robustly activates transcription of a broad array of genes in the hippocampal formation of middle-aged ovariectomized rats via estrogen receptors (ERα, ERß, and G protein-coupled ER). Selective ERß agonists also influence hippocampal functions, although their downstream molecular targets and mechanisms are not known. In this study, we explored the effects of long-term treatment with ERß agonist diarylpropionitrile (DPN, 0.05 mg/kg/day, sc.) on the hippocampal transcriptome in ovariectomized, middle-aged (13 month) rats. Isolated hippocampal formations were analyzed by Affymetrix oligonucleotide microarray and quantitative real-time PCR. Four hundred ninety-seven genes fulfilled the absolute fold change higher than 2 (FC > 2) selection criterion. Among them 370 genes were activated. Pathway analysis identified terms including glutamatergic and cholinergic synapse, RNA transport, endocytosis, thyroid hormone signaling, RNA degradation, retrograde endocannabinoid signaling, and mRNA surveillance. PCR studies showed transcriptional regulation of 58 genes encoding growth factors (Igf2, Igfb2, Igf1r, Fgf1, Mdk, Ntf3, Bdnf), transcription factors (Otx2, Msx1), potassium channels (Kcne2), neuropeptides (Cck, Pdyn), peptide receptors (Crhr2, Oprm1, Gnrhr, Galr2, Sstr1, Sstr3), neurotransmitter receptors (Htr1a, Htr2c, Htr2a, Gria2, Gria3, Grm5, Gabra1, Chrm5, Adrb1), and vesicular neurotransmitter transporters (Slc32a1, Slc17a7). Protein-protein interaction analysis revealed networking of clusters associated with the regulation of growth/troph factor signaling, transcription, translation, neurotransmitter and neurohormone signaling mechanisms and potassium channels. Collectively, the results reveal the contribution of ERß-mediated processes to the regulation of transcription, translation, neurogenesis, neuromodulation, and neuroprotection in the hippocampal formation of ovariectomized, middle-aged rats and elucidate regulatory channels responsible for DPN-altered functional patterns. These findings support the notion that selective activation of ERß may be a viable approach for treating the neural symptoms of E2 deficiency in menopause.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Front Cell Neurosci Año: 2016 Tipo del documento: Article País de afiliación: Hungria

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Front Cell Neurosci Año: 2016 Tipo del documento: Article País de afiliación: Hungria
...