A Longitudinal HbA1c Model Elucidates Genes Linked to Disease Progression on Metformin.
Clin Pharmacol Ther
; 100(5): 537-547, 2016 Nov.
Article
en En
| MEDLINE
| ID: mdl-27415606
One-third of type-2 diabetic patients respond poorly to metformin. Despite extensive research, the impact of genetic and nongenetic factors on long-term outcome is unknown. In this study we combine nonlinear mixed effect modeling with computational genetic methodologies to identify predictors of long-term response. In all, 1,056 patients contributed their genetic, demographic, and long-term HbA1c data. The top nine variants (of 12,000 variants in 267 candidate genes) accounted for approximately one-third of the variability in the disease progression parameter. Average serum creatinine level, age, and weight were determinants of symptomatic response; however, explaining negligible variability. Two single nucleotide polymorphisms (SNPs) in CSMD1 gene (rs2617102, rs2954625) and one SNP in a pharmacologically relevant SLC22A2 gene (rs316009) influenced disease progression, with minor alleles leading to less and more favorable outcomes, respectively. Overall, our study highlights the influence of genetic factors on long-term HbA1c response and provides a computational model, which when validated, may be used to individualize treatment.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Hemoglobina Glucada
/
Progresión de la Enfermedad
/
Proteínas de Transporte de Catión Orgánico
/
Diabetes Mellitus Tipo 2
/
Variantes Farmacogenómicas
/
Proteínas de la Membrana
/
Metformina
Tipo de estudio:
Observational_studies
/
Prognostic_studies
/
Risk_factors_studies
Límite:
Adult
/
Aged
/
Aged80
/
Female
/
Humans
/
Male
/
Middle aged
Idioma:
En
Revista:
Clin Pharmacol Ther
Año:
2016
Tipo del documento:
Article
País de afiliación:
Estados Unidos