Your browser doesn't support javascript.
loading
A Longitudinal HbA1c Model Elucidates Genes Linked to Disease Progression on Metformin.
Goswami, S; Yee, S W; Xu, F; Sridhar, S B; Mosley, J D; Takahashi, A; Kubo, M; Maeda, S; Davis, R L; Roden, D M; Hedderson, M M; Giacomini, K M; Savic, R M.
Afiliación
  • Goswami S; University of California, San Francisco, San Francisco, California, USA.
  • Yee SW; University of California, San Francisco, San Francisco, California, USA.
  • Xu F; Kaiser Permanente Northern California, Oakland, California, USA.
  • Sridhar SB; Kaiser Permanente Northern California, Oakland, California, USA.
  • Mosley JD; Vanderbilt University, Nashville, Tennessee, USA.
  • Takahashi A; RIKEN Institute, Center for Genomic Medicine, Saitama, Japan.
  • Kubo M; RIKEN Institute, Center for Genomic Medicine, Saitama, Japan.
  • Maeda S; RIKEN Institute, Center for Genomic Medicine, Saitama, Japan.
  • Davis RL; Kaiser Permanente Georgia, Atlanta, Georgia, USA.
  • Roden DM; Center for Biomedical Informatics, University of Tennessee Health Sciences Center, Memphis, Tennessee, USA.
  • Hedderson MM; Vanderbilt University, Nashville, Tennessee, USA.
  • Giacomini KM; Kaiser Permanente Northern California, Oakland, California, USA.
  • Savic RM; University of California, San Francisco, San Francisco, California, USA. Kathy.giacomini@ucsf.edu.
Clin Pharmacol Ther ; 100(5): 537-547, 2016 Nov.
Article en En | MEDLINE | ID: mdl-27415606
One-third of type-2 diabetic patients respond poorly to metformin. Despite extensive research, the impact of genetic and nongenetic factors on long-term outcome is unknown. In this study we combine nonlinear mixed effect modeling with computational genetic methodologies to identify predictors of long-term response. In all, 1,056 patients contributed their genetic, demographic, and long-term HbA1c data. The top nine variants (of 12,000 variants in 267 candidate genes) accounted for approximately one-third of the variability in the disease progression parameter. Average serum creatinine level, age, and weight were determinants of symptomatic response; however, explaining negligible variability. Two single nucleotide polymorphisms (SNPs) in CSMD1 gene (rs2617102, rs2954625) and one SNP in a pharmacologically relevant SLC22A2 gene (rs316009) influenced disease progression, with minor alleles leading to less and more favorable outcomes, respectively. Overall, our study highlights the influence of genetic factors on long-term HbA1c response and provides a computational model, which when validated, may be used to individualize treatment.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Hemoglobina Glucada / Progresión de la Enfermedad / Proteínas de Transporte de Catión Orgánico / Diabetes Mellitus Tipo 2 / Variantes Farmacogenómicas / Proteínas de la Membrana / Metformina Tipo de estudio: Observational_studies / Prognostic_studies / Risk_factors_studies Límite: Adult / Aged / Aged80 / Female / Humans / Male / Middle aged Idioma: En Revista: Clin Pharmacol Ther Año: 2016 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Hemoglobina Glucada / Progresión de la Enfermedad / Proteínas de Transporte de Catión Orgánico / Diabetes Mellitus Tipo 2 / Variantes Farmacogenómicas / Proteínas de la Membrana / Metformina Tipo de estudio: Observational_studies / Prognostic_studies / Risk_factors_studies Límite: Adult / Aged / Aged80 / Female / Humans / Male / Middle aged Idioma: En Revista: Clin Pharmacol Ther Año: 2016 Tipo del documento: Article País de afiliación: Estados Unidos
...