Femtomolar detection of mercuric ions using polypyrrole, pectin and graphene nanocomposites modified electrode.
J Colloid Interface Sci
; 483: 268-274, 2016 Dec 01.
Article
en En
| MEDLINE
| ID: mdl-27565958
Several nanomaterials and techniques for the detection of mercuric ions (Hg(2+)) have been developed in the past decade. However, simple, low-cost and rapid sensor for the detection of heavy metal ions yet remains an important task. Herein, we present a highly sensitive electrochemical sensor for the femtomolar detection of Hg(2+) based on polypyrrole, pectin, and graphene (PPy/Pct/GR) which was prepared by one step electrochemical potentiodyanamic method. The effect of concentration of pectin, polypyrrole and graphene were studied for the detection of Hg(2+). The influence of experimental parameters including effect of pH, accumulation time and accumulation potential were also studied. Different pulse anodic stripping voltammetry was chosen to detect Hg(2+) at PPy/Pct/GR/GCE modified electrode. The fabricated sensor achieved an excellent performance towards Hg(2+) detection such as higher sensitivity of 28.64µAµM(-1) and very low detection limit (LOD) of 4 fM at the signal to noise ratio of 3. The LOD of our sensor offered nearly 6 orders of magnitude lower than that of recommended concentration of Hg(2+) in drinking water by United States Environmental Protection Agency and World Health Organization. Compared to all previously reported electrochemical sensors towards Hg(2+) detection, our newly fabricated sensor attained a very LOD in the detection of Hg(2+). The practicality of our proposed sensor for the detection of Hg(2+) was successfully demonstrated in untreated tap water.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Contexto en salud:
2_ODS3
Problema de salud:
2_cobertura_universal
Tipo de estudio:
Diagnostic_studies
Idioma:
En
Revista:
J Colloid Interface Sci
Año:
2016
Tipo del documento:
Article
País de afiliación:
India