Your browser doesn't support javascript.
loading
Biogenic Manganese-Oxide Mineralization is Enhanced by an Oxidative Priming Mechanism for the Multi-Copper Oxidase, MnxEFG.
Tao, Lizhi; Simonov, Alexandr N; Romano, Christine A; Butterfield, Cristina N; Fekete, Monika; Tebo, Bradley M; Bond, Alan M; Spiccia, Leone; Martin, Lisandra L; Casey, William H.
Afiliación
  • Tao L; Department of Chemistry and Department of Earth and Planetary Sciences, University of California, One Shields Avenue, Davis, California, 95616, USA.
  • Simonov AN; School of Chemistry, Monash University, Victoria, 3800, Australia.
  • Romano CA; ARC Centre of Excellence for Electromaterials Science, Monash University, Victoria, 3800, Australia.
  • Butterfield CN; Division of Environmental and Biomolecular Systems, Institute of Environmental Health, Oregon Health & Science University, Portland, Oregon, 97239, USA.
  • Fekete M; Division of Environmental and Biomolecular Systems, Institute of Environmental Health, Oregon Health & Science University, Portland, Oregon, 97239, USA.
  • Tebo BM; Current address: Department of Earth and Planetary Science, University of California Berkeley, Berkeley, California, 94720, USA.
  • Bond AM; School of Chemistry, Monash University, Victoria, 3800, Australia.
  • Spiccia L; Division of Environmental and Biomolecular Systems, Institute of Environmental Health, Oregon Health & Science University, Portland, Oregon, 97239, USA.
  • Martin LL; School of Chemistry, Monash University, Victoria, 3800, Australia.
  • Casey WH; School of Chemistry, Monash University, Victoria, 3800, Australia.
Chemistry ; 23(6): 1346-1352, 2017 Jan 26.
Article en En | MEDLINE | ID: mdl-27726210
ABSTRACT
In a natural geochemical cycle, manganese-oxide minerals (MnOx ) are principally formed through a microbial process, where a putative multicopper oxidase MnxG plays an essential role. Recent success in isolating the approximately 230 kDa, enzymatically active MnxEFG protein complex, has advanced our understanding of biogenic MnOx mineralization. Here, the kinetics of MnOx formation catalyzed by MnxEFG are examined using a quartz crystal microbalance (QCM), and the first electrochemical characterization of the MnxEFG complex is reported using Fourier transformed alternating current voltammetry. The voltammetric studies undertaken using near-neutral solutions (pH 7.8) establish the apparent reversible potentials for the Type 2 Cu sites in MnxEFG immobilized on a carboxy-terminated monolayer to be in the range 0.36-0.40 V versus a normal hydrogen electrode. Oxidative priming of the MnxEFG protein complex substantially enhances the enzymatic activity, as found by in situ electrochemical QCM analysis. The biogeochemical significance of this enzyme is clear, although the role of an oxidative priming of catalytic activity might be either an evolutionary advantage or an ancient relic of primordial existence.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Óxidos / Oxidorreductasas / Compuestos de Manganeso Idioma: En Revista: Chemistry Asunto de la revista: QUIMICA Año: 2017 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Óxidos / Oxidorreductasas / Compuestos de Manganeso Idioma: En Revista: Chemistry Asunto de la revista: QUIMICA Año: 2017 Tipo del documento: Article País de afiliación: Estados Unidos
...