Kinetic Analysis and Probing with Substrate Analogues of the Reaction Pathway of the Nitrile Reductase QueF from Escherichia coli.
J Biol Chem
; 291(49): 25411-25426, 2016 Dec 02.
Article
en En
| MEDLINE
| ID: mdl-27754868
The enzyme QueF catalyzes a four-electron reduction of a nitrile group into an amine, the only reaction of this kind known in biology. In nature, QueF converts 7-cyano-7-deazaguanine (preQ0) into 7-aminomethyl-7-deazaguanine (preQ1) for the biosynthesis of the tRNA-inserted nucleoside queuosine. The proposed QueF mechanism involves a covalent thioimide adduct between preQ0 and a cysteine nucleophile in the enzyme, and this adduct is subsequently converted into preQ1 in two NADPH-dependent reduction steps. Here, we show that the Escherichia coli QueF binds preQ0 in a strongly exothermic process (ΔH = -80.3 kJ/mol; -TΔS = 37.9 kJ/mol, Kd = 39 nm) whereby the thioimide adduct is formed with half-of-the-sites reactivity in the homodimeric enzyme. Both steps of preQ0 reduction involve transfer of the 4-pro-R-hydrogen from NADPH. They proceed about 4-7-fold more slowly than trapping of the enzyme-bound preQ0 as covalent thioimide (1.63 s-1) and are thus mainly rate-limiting for the enzyme's kcat (=0.12 s-1). Kinetic studies combined with simulation reveal a large primary deuterium kinetic isotope effect of 3.3 on the covalent thioimide reduction and a smaller kinetic isotope effect of 1.8 on the imine reduction to preQ1 7-Formyl-7-deazaguanine, a carbonyl analogue of the imine intermediate, was synthesized chemically and is shown to be recognized by QueF as weak ligand for binding (ΔH = -2.3 kJ/mol; -TΔS = -19.5 kJ/mol) but not as substrate for reduction or oxidation. A model of QueF substrate recognition and a catalytic pathway for the enzyme are proposed based on these data.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Contexto en salud:
3_ND
Problema de salud:
3_neglected_diseases
/
3_zoonosis
Asunto principal:
Oxidorreductasas
/
Proteínas de Escherichia coli
/
Escherichia coli
/
Guanosina
/
Modelos Químicos
/
NADP
/
Nucleósido Q
Idioma:
En
Revista:
J Biol Chem
Año:
2016
Tipo del documento:
Article