Your browser doesn't support javascript.
loading
Tailoring exchange couplings in magnetic topological-insulator/antiferromagnet heterostructures.
He, Qing Lin; Kou, Xufeng; Grutter, Alexander J; Yin, Gen; Pan, Lei; Che, Xiaoyu; Liu, Yuxiang; Nie, Tianxiao; Zhang, Bin; Disseler, Steven M; Kirby, Brian J; Ratcliff Ii, William; Shao, Qiming; Murata, Koichi; Zhu, Xiaodan; Yu, Guoqiang; Fan, Yabin; Montazeri, Mohammad; Han, Xiaodong; Borchers, Julie A; Wang, Kang L.
Afiliación
  • He QL; Department of Electrical Engineering, University of California, Los Angeles, California 90095, USA.
  • Kou X; Department of Electrical Engineering, University of California, Los Angeles, California 90095, USA.
  • Grutter AJ; NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-6102, USA.
  • Yin G; Department of Electrical Engineering, University of California, Los Angeles, California 90095, USA.
  • Pan L; Department of Electrical Engineering, University of California, Los Angeles, California 90095, USA.
  • Che X; Department of Electrical Engineering, University of California, Los Angeles, California 90095, USA.
  • Liu Y; Department of Electrical Engineering, University of California, Los Angeles, California 90095, USA.
  • Nie T; Department of Electrical Engineering, University of California, Los Angeles, California 90095, USA.
  • Zhang B; Beijing Key Lab of Microstructure and Property of Advanced Materials, Beijing University of Technology, 100124 Beijing, China.
  • Disseler SM; NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-6102, USA.
  • Kirby BJ; NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-6102, USA.
  • Ratcliff Ii W; NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-6102, USA.
  • Shao Q; Department of Electrical Engineering, University of California, Los Angeles, California 90095, USA.
  • Murata K; Department of Electrical Engineering, University of California, Los Angeles, California 90095, USA.
  • Zhu X; Department of Electrical Engineering, University of California, Los Angeles, California 90095, USA.
  • Yu G; Department of Electrical Engineering, University of California, Los Angeles, California 90095, USA.
  • Fan Y; Department of Electrical Engineering, University of California, Los Angeles, California 90095, USA.
  • Montazeri M; Department of Electrical Engineering, University of California, Los Angeles, California 90095, USA.
  • Han X; Beijing Key Lab of Microstructure and Property of Advanced Materials, Beijing University of Technology, 100124 Beijing, China.
  • Borchers JA; NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-6102, USA.
  • Wang KL; Department of Electrical Engineering, University of California, Los Angeles, California 90095, USA.
Nat Mater ; 16(1): 94-100, 2017 01.
Article en En | MEDLINE | ID: mdl-27798622
ABSTRACT
Magnetic topological insulators such as Cr-doped (Bi,Sb)2Te3 provide a platform for the realization of versatile time-reversal symmetry-breaking physics. By constructing heterostructures exhibiting Néel order in an antiferromagnetic CrSb and ferromagnetic order in Cr-doped (Bi,Sb)2Te3, we realize emergent interfacial magnetic phenomena which can be tailored through artificial structural engineering. Through deliberate geometrical design of heterostructures and superlattices, we demonstrate the use of antiferromagnetic exchange coupling in manipulating the magnetic properties of magnetic topological insulators. Proximity effects are shown to induce an interfacial spin texture modulation and establish an effective long-range exchange coupling mediated by antiferromagnetism, which significantly enhances the magnetic ordering temperature in the superlattice. This work provides a new framework on integrating topological insulators with antiferromagnetic materials and unveils new avenues towards dissipationless topological antiferromagnetic spintronics.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Nat Mater Asunto de la revista: CIENCIA / QUIMICA Año: 2017 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Nat Mater Asunto de la revista: CIENCIA / QUIMICA Año: 2017 Tipo del documento: Article País de afiliación: Estados Unidos
...