Your browser doesn't support javascript.
loading
Polymyxin B in Combination with Rifampin and Meropenem against Polymyxin B-Resistant KPC-Producing Klebsiella pneumoniae.
Diep, John K; Jacobs, David M; Sharma, Rajnikant; Covelli, Jenna; Bowers, Dana R; Russo, Thomas A; Rao, Gauri G.
Afiliación
  • Diep JK; Department of Pharmacy Practice, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo-State University of New York, Buffalo, New York, USA.
  • Jacobs DM; Department of Pharmacy Practice, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo-State University of New York, Buffalo, New York, USA.
  • Sharma R; Department of Pharmacy Practice, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo-State University of New York, Buffalo, New York, USA.
  • Covelli J; Department of Pharmacy Practice, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo-State University of New York, Buffalo, New York, USA.
  • Bowers DR; Kingman Regional Medical Center, Kingman, Arizona, USA.
  • Russo TA; Department of Medicine, Department of Microbiology and Immunology, The Witebsky Center for Microbial Pathogenesis, University at Buffalo-State University of New York, and Veterans Administration Western New York Healthcare System, Buffalo, New York, USA.
  • Rao GG; Department of Pharmacy Practice, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo-State University of New York, Buffalo, New York, USA gaurirao@live.unc.edu.
Article en En | MEDLINE | ID: mdl-27872078
ABSTRACT
Safe and effective therapies are urgently needed to treat polymyxin-resistant KPC-producing Klebsiella pneumoniae infections and suppress the emergence of resistance. We investigated the pharmacodynamics of polymyxin B, rifampin, and meropenem alone and as polymyxin B-based double and triple combinations against KPC-producing K. pneumoniae isolates. The rates and extents of killing with polymyxin B (1 to 128 mg/liter), rifampin (2 to 16 mg/liter), and meropenem (10 to 120 mg/liter) were evaluated against polymyxin B-susceptible (PBs) and polymyxin B-resistant (PBr) clinical isolates using 48-h static time-kill studies. Additionally, humanized triple-drug regimens of polymyxin B (concentration at steady state [Css] values of 0.5, 1, and 2 mg/liter), 600 mg rifampin every 12 or 8 h, and 1 or 2 g meropenem every 8 h dosed as an extended 3-h infusion were simulated over 48 h by using a one-compartment in vitro dynamic infection model. Serial bacterial counts were performed to quantify the pharmacodynamic effect. Population analysis profiles (PAPs) were used to assess the emergence of polymyxin B resistance. Monotherapy was ineffective against both isolates. Polymyxin B with rifampin demonstrated early bactericidal activity against the PBs isolate, followed by regrowth by 48 h. Bactericidal activity was sustained at all polymyxin B concentrations of ≥2 mg/liter in combination with meropenem. No two-drug combinations were effective against the PBr isolate, but all simulated triple-drug regimens showed early bactericidal activity against both strains by 8 h that was sustained over 48 h. PAPs did not reveal the emergence of resistant subpopulations. The triple-drug combination of polymyxin B, rifampin, and meropenem may be a viable consideration for the treatment of PBr KPC-producing K. pneumoniae infections. Further investigation is warranted to optimize triple-combination therapy.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Contexto en salud: 3_ND Problema de salud: 3_neglected_diseases / 3_zoonosis Asunto principal: Polimixina B / Rifampin / Beta-Lactamasas / Tienamicinas / Klebsiella pneumoniae / Antibacterianos Idioma: En Revista: Antimicrob Agents Chemother Año: 2017 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Contexto en salud: 3_ND Problema de salud: 3_neglected_diseases / 3_zoonosis Asunto principal: Polimixina B / Rifampin / Beta-Lactamasas / Tienamicinas / Klebsiella pneumoniae / Antibacterianos Idioma: En Revista: Antimicrob Agents Chemother Año: 2017 Tipo del documento: Article País de afiliación: Estados Unidos
...