Your browser doesn't support javascript.
loading
DTNI: a novel toxicogenomics data analysis tool for identifying the molecular mechanisms underlying the adverse effects of toxic compounds.
Hendrickx, Diana M; Souza, Terezinha; Jennen, Danyel G J; Kleinjans, Jos C S.
Afiliación
  • Hendrickx DM; Department of Toxicogenomics, GROW-School for Oncology and Developmental Biology, Maastricht University, Universiteitssingel 40, 6229 ER, Maastricht, The Netherlands. d.hendrickx@maastrichtuniversity.nl.
  • Souza T; , P.O. Box 616, 6200 MD, Maastricht, The Netherlands. d.hendrickx@maastrichtuniversity.nl.
  • Jennen DGJ; Department of Toxicogenomics, GROW-School for Oncology and Developmental Biology, Maastricht University, Universiteitssingel 40, 6229 ER, Maastricht, The Netherlands.
  • Kleinjans JCS; , P.O. Box 616, 6200 MD, Maastricht, The Netherlands.
Arch Toxicol ; 91(6): 2343-2352, 2017 Jun.
Article en En | MEDLINE | ID: mdl-28032149
ABSTRACT
Unravelling gene regulatory networks (GRNs) influenced by chemicals is a major challenge in systems toxicology. Because toxicant-induced GRNs evolve over time and dose, the analysis of global gene expression data measured at multiple time points and doses will provide insight in the adverse effects of compounds. Therefore, there is a need for mathematical methods for GRN identification from time-over-dose-dependent data. One of the current approaches for GRN inference is Time Series Network Identification (TSNI). TSNI is based on ordinary differential equations (ODE), describing the time evolution of the expression of each gene, which is assumed to be dependent on the expression of other genes and an external perturbation (i.e. chemical exposure). Here, we present Dose-Time Network Identification (DTNI), a method extending TSNI by including ODE describing how the expression of each gene evolves with dose, which is supposed to depend on the expression of other genes and the exposure time. We also adapted TSNI in order to enable inclusion of time-over-dose-dependent data from multiple compounds. Here, we show that DTNI outperforms TSNI in inferring a toxicant-induced GRN. Moreover, we show that DTNI is a suitable method to infer a GRN dose- and time-dependently induced by a group of compounds influencing a common biological process. Applying DTNI on experimental data from TG-GATEs, we demonstrate that DTNI provides in-depth information on the mode of action of compounds, in particular key events and potential molecular initiating events. Furthermore, DTNI also discloses several unknown interactions which have to be verified experimentally.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Sustancias Peligrosas / Expresión Génica / Toxicogenética / Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos / Redes Reguladoras de Genes / Modelos Biológicos Tipo de estudio: Diagnostic_studies / Etiology_studies / Prognostic_studies / Risk_factors_studies Límite: Humans Idioma: En Revista: Arch Toxicol Año: 2017 Tipo del documento: Article País de afiliación: Países Bajos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Sustancias Peligrosas / Expresión Génica / Toxicogenética / Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos / Redes Reguladoras de Genes / Modelos Biológicos Tipo de estudio: Diagnostic_studies / Etiology_studies / Prognostic_studies / Risk_factors_studies Límite: Humans Idioma: En Revista: Arch Toxicol Año: 2017 Tipo del documento: Article País de afiliación: Países Bajos
...