Your browser doesn't support javascript.
loading
Fully Automated Deep Learning System for Bone Age Assessment.
Lee, Hyunkwang; Tajmir, Shahein; Lee, Jenny; Zissen, Maurice; Yeshiwas, Bethel Ayele; Alkasab, Tarik K; Choy, Garry; Do, Synho.
Afiliación
  • Lee H; Massachusetts General Hospital and Harvard Medical School, Radiology, 25 New Chardon Street, Suite 400B, Boston, MA, 02114, USA.
  • Tajmir S; Massachusetts General Hospital and Harvard Medical School, Radiology, 25 New Chardon Street, Suite 400B, Boston, MA, 02114, USA.
  • Lee J; Massachusetts General Hospital and Harvard Medical School, Radiology, 25 New Chardon Street, Suite 400B, Boston, MA, 02114, USA.
  • Zissen M; Massachusetts General Hospital and Harvard Medical School, Radiology, 25 New Chardon Street, Suite 400B, Boston, MA, 02114, USA.
  • Yeshiwas BA; Massachusetts General Hospital and Harvard Medical School, Radiology, 25 New Chardon Street, Suite 400B, Boston, MA, 02114, USA.
  • Alkasab TK; Massachusetts General Hospital and Harvard Medical School, Radiology, 25 New Chardon Street, Suite 400B, Boston, MA, 02114, USA.
  • Choy G; Massachusetts General Hospital and Harvard Medical School, Radiology, 25 New Chardon Street, Suite 400B, Boston, MA, 02114, USA.
  • Do S; Massachusetts General Hospital and Harvard Medical School, Radiology, 25 New Chardon Street, Suite 400B, Boston, MA, 02114, USA. sdo@mgh.harvard.edu.
J Digit Imaging ; 30(4): 427-441, 2017 Aug.
Article en En | MEDLINE | ID: mdl-28275919
Skeletal maturity progresses through discrete phases, a fact that is used routinely in pediatrics where bone age assessments (BAAs) are compared to chronological age in the evaluation of endocrine and metabolic disorders. While central to many disease evaluations, little has changed to improve the tedious process since its introduction in 1950. In this study, we propose a fully automated deep learning pipeline to segment a region of interest, standardize and preprocess input radiographs, and perform BAA. Our models use an ImageNet pretrained, fine-tuned convolutional neural network (CNN) to achieve 57.32 and 61.40% accuracies for the female and male cohorts on our held-out test images. Female test radiographs were assigned a BAA within 1 year 90.39% and within 2 years 98.11% of the time. Male test radiographs were assigned 94.18% within 1 year and 99.00% within 2 years. Using the input occlusion method, attention maps were created which reveal what features the trained model uses to perform BAA. These correspond to what human experts look at when manually performing BAA. Finally, the fully automated BAA system was deployed in the clinical environment as a decision supporting system for more accurate and efficient BAAs at much faster interpretation time (<2 s) than the conventional method.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Determinación de la Edad por el Esqueleto / Redes Neurales de la Computación / Aprendizaje Automático Tipo de estudio: Prognostic_studies Límite: Adolescent / Adult / Child / Female / Humans / Male Idioma: En Revista: J Digit Imaging Asunto de la revista: DIAGNOSTICO POR IMAGEM / INFORMATICA MEDICA / RADIOLOGIA Año: 2017 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Determinación de la Edad por el Esqueleto / Redes Neurales de la Computación / Aprendizaje Automático Tipo de estudio: Prognostic_studies Límite: Adolescent / Adult / Child / Female / Humans / Male Idioma: En Revista: J Digit Imaging Asunto de la revista: DIAGNOSTICO POR IMAGEM / INFORMATICA MEDICA / RADIOLOGIA Año: 2017 Tipo del documento: Article País de afiliación: Estados Unidos
...