Your browser doesn't support javascript.
loading
Understanding Angiography-Based Aneurysm Flow Fields through Comparison with Computational Fluid Dynamics.
Cebral, J R; Mut, F; Chung, B J; Spelle, L; Moret, J; van Nijnatten, F; Ruijters, D.
Afiliación
  • Cebral JR; From the Bioengineering Department (J.R.C., F.M., B.J.C.), Volgenau School of Engineering, George Mason University, Fairfax, Virginia jcebral@gmu.edu.
  • Mut F; From the Bioengineering Department (J.R.C., F.M., B.J.C.), Volgenau School of Engineering, George Mason University, Fairfax, Virginia.
  • Chung BJ; From the Bioengineering Department (J.R.C., F.M., B.J.C.), Volgenau School of Engineering, George Mason University, Fairfax, Virginia.
  • Spelle L; Faculté de Médecine Paris-Sud (L.S.), Le Kremlin-Bicetre, France.
  • Moret J; Interventional Neuroradiology (J.M.), Beaujon University Hospital, Clichy, France.
  • van Nijnatten F; Image Guided Therapy Innovation (F.v.N., D.R.), Philips Healthcare, Best, the Netherlands.
  • Ruijters D; Image Guided Therapy Innovation (F.v.N., D.R.), Philips Healthcare, Best, the Netherlands.
AJNR Am J Neuroradiol ; 38(6): 1180-1186, 2017 Jun.
Article en En | MEDLINE | ID: mdl-28385882
ABSTRACT
BACKGROUND AND

PURPOSE:

Hemodynamics is thought to be an important factor for aneurysm progression and rupture. Our aim was to evaluate whether flow fields reconstructed from dynamic angiography data can be used to realistically represent the main flow structures in intracranial aneurysms. MATERIALS AND

METHODS:

DSA-based flow reconstructions, obtained during interventional treatment, were compared qualitatively with flow fields obtained from patient-specific computational fluid dynamics models and quantitatively with projections of the computational fluid dynamics fields (by computing a directional similarity of the vector fields) in 15 cerebral aneurysms.

RESULTS:

The average similarity between the DSA and the projected computational fluid dynamics flow fields was 78% in the parent artery, while it was only 30% in the aneurysm region. Qualitatively, both the DSA and projected computational fluid dynamics flow fields captured the location of the inflow jet, the main vortex structure, the intrasaccular flow split, and the main rotation direction in approximately 60% of the cases.

CONCLUSIONS:

Several factors affect the reconstruction of 2D flow fields from dynamic angiography sequences. The most important factors are the 3-dimensionality of the intrasaccular flow patterns and inflow jets, the alignment of the main vortex structure with the line of sight, the overlapping of surrounding vessels, and possibly frame rate undersampling. Flow visualization with DSA from >1 projection is required for understanding of the 3D intrasaccular flow patterns. Although these DSA-based flow quantification techniques do not capture swirling or secondary flows in the parent artery, they still provide a good representation of the mean axial flow and the corresponding flow rate.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Angiografía Cerebral / Aneurisma Intracraneal / Hemodinámica Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: AJNR Am J Neuroradiol Año: 2017 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Angiografía Cerebral / Aneurisma Intracraneal / Hemodinámica Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: AJNR Am J Neuroradiol Año: 2017 Tipo del documento: Article
...