Your browser doesn't support javascript.
loading
Structure and mechanics of aegagropilae fiber network.
Verhille, Gautier; Moulinet, Sébastien; Vandenberghe, Nicolas; Adda-Bedia, Mokhtar; Le Gal, Patrice.
Afiliación
  • Verhille G; Aix Marseille Université, CNRS, Centrale Marseille, Institut de Recherche Hors Equilibre, 13013 Marseille, France; gautier.verhille@irphe.univ-mrs.fr.
  • Moulinet S; Laboratoire de Physique Statistique, Ecole Normale Supérieure, Université Pierre et Marie Curie Paris 06, Université Paris Diderot, CNRS, 75005 Paris, France.
  • Vandenberghe N; Aix Marseille Université, CNRS, Centrale Marseille, Institut de Recherche Hors Equilibre, 13013 Marseille, France.
  • Adda-Bedia M; Université Lyon, Ecole Normale Supérieure de Lyon, Université Claude Bernard, CNRS, Laboratoire de Physique, F-69342 Lyon, France.
  • Le Gal P; Aix Marseille Université, CNRS, Centrale Marseille, Institut de Recherche Hors Equilibre, 13013 Marseille, France.
Proc Natl Acad Sci U S A ; 114(18): 4607-4612, 2017 05 02.
Article en En | MEDLINE | ID: mdl-28416683
ABSTRACT
Fiber networks encompass a wide range of natural and manmade materials. The threads or filaments from which they are formed span a wide range of length scales from nanometers, as in biological tissues and bundles of carbon nanotubes, to millimeters, as in paper and insulation materials. The mechanical and thermal behavior of these complex structures depends on both the individual response of the constituent fibers and the density and degree of entanglement of the network. A question of paramount importance is how to control the formation of a given fiber network to optimize a desired function. The study of fiber clustering of natural flocs could be useful for improving fabrication processes, such as in the paper and textile industries. Here, we use the example of aegagropilae that are the remains of a seagrass (Posidonia oceanica) found on Mediterranean beaches. First, we characterize different aspects of their structure and mechanical response, and second, we draw conclusions on their formation process. We show that these natural aggregates are formed in open sea by random aggregation and compaction of fibers held together by friction forces. Although formed in a natural environment, thus under relatively unconstrained conditions, the geometrical and mechanical properties of the resulting fiber aggregates are quite robust. This study opens perspectives for manufacturing complex fiber network materials.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Proc Natl Acad Sci U S A Año: 2017 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Proc Natl Acad Sci U S A Año: 2017 Tipo del documento: Article
...