Your browser doesn't support javascript.
loading
Source apportionment of urban air pollutants using constrained receptor models with a priori profile information.
Liao, Ho-Tang; Yau, Yu-Chen; Huang, Chun-Sheng; Chen, Nathan; Chow, Judith C; Watson, John G; Tsai, Shih-Wei; Chou, Charles C-K; Wu, Chang-Fu.
Afiliación
  • Liao HT; Institute of Occupational Medicine and Industrial Hygiene, National Taiwan University, Taipei, Taiwan.
  • Yau YC; Institute of Environmental Health, National Taiwan University, Taipei, Taiwan.
  • Huang CS; Institute of Environmental Health, National Taiwan University, Taipei, Taiwan.
  • Chen N; Institute of Occupational Medicine and Industrial Hygiene, National Taiwan University, Taipei, Taiwan.
  • Chow JC; Division of Atmospheric Sciences, Desert Research Institute, Reno, NV, USA.
  • Watson JG; Division of Atmospheric Sciences, Desert Research Institute, Reno, NV, USA.
  • Tsai SW; Institute of Environmental Health, National Taiwan University, Taipei, Taiwan.
  • Chou CC; Research Center for Environmental Changes, Academia Sinica, Taipei, Taiwan. Electronic address: ckchou@rcec.sinica.edu.tw.
  • Wu CF; Institute of Occupational Medicine and Industrial Hygiene, National Taiwan University, Taipei, Taiwan; Institute of Environmental Health, National Taiwan University, Taipei, Taiwan; Department of Public Health, National Taiwan University, Taipei, Taiwan. Electronic address: changfu@ntu.edu.tw.
Environ Pollut ; 227: 323-333, 2017 Aug.
Article en En | MEDLINE | ID: mdl-28478370
Exposure to air pollutants such as volatile organic compounds (VOCs) and fine particulate matter (PM2.5) are associated with adverse health effects. This study applied multiple time resolution data of hourly VOCs and 24-h PM2.5 to a constrained Positive Matrix Factorization (PMF) model for source apportionment in Taipei, Taiwan. Ninety-two daily PM2.5 samples and 2208 hourly VOC measurements were collected during four seasons in 2014 and 2015. With some a priori information, we used different procedures to constrain retrieved factors toward realistic sources. A total of nine source factors were identified as: natural gas/liquefied petroleum gas (LPG) leakage, solvent use/industrial process, contaminated marine aerosol, secondary aerosol/long-range transport, oil combustion, traffic related, evaporative gasoline emission, gasoline exhaust, and soil dust. Results showed that solvent use/industrial process was the largest contributor (19%) to VOCs while the largest contributor to PM2.5 mass was secondary aerosol/long-range transport (57%). A robust regression analysis showed that secondary aerosol was mostly contributed by regional transport related factor (25%).
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Contexto en salud: 2_ODS3 Problema de salud: 2_quimicos_contaminacion Asunto principal: Monitoreo del Ambiente / Contaminantes Atmosféricos / Contaminación del Aire / Modelos Químicos Tipo de estudio: Diagnostic_studies / Prognostic_studies País/Región como asunto: Asia Idioma: En Revista: Environ Pollut Asunto de la revista: SAUDE AMBIENTAL Año: 2017 Tipo del documento: Article País de afiliación: Taiwán

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Contexto en salud: 2_ODS3 Problema de salud: 2_quimicos_contaminacion Asunto principal: Monitoreo del Ambiente / Contaminantes Atmosféricos / Contaminación del Aire / Modelos Químicos Tipo de estudio: Diagnostic_studies / Prognostic_studies País/Región como asunto: Asia Idioma: En Revista: Environ Pollut Asunto de la revista: SAUDE AMBIENTAL Año: 2017 Tipo del documento: Article País de afiliación: Taiwán
...