Your browser doesn't support javascript.
loading
Development of a Patient-Derived Induced Pluripotent Stem Cell Model for the Investigation of SCN5A-D1275N-Related Cardiac Sodium Channelopathy.
Hayano, Mamoru; Makiyama, Takeru; Kamakura, Tsukasa; Watanabe, Hiroshi; Sasaki, Kenichi; Funakoshi, Shunsuke; Wuriyanghai, Yimin; Nishiuchi, Suguru; Harita, Takeshi; Yamamoto, Yuta; Kohjitani, Hirohiko; Hirose, Sayako; Yokoi, Fumika; Chen, Jiarong; Baba, Osamu; Horie, Takahiro; Chonabayashi, Kazuhisa; Ohno, Seiko; Toyoda, Futoshi; Yoshida, Yoshinori; Ono, Koh; Horie, Minoru; Kimura, Takeshi.
Afiliación
  • Hayano M; Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine.
  • Makiyama T; Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine.
  • Kamakura T; Division of Arrhythmia and Electrophysiology, Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center.
  • Watanabe H; Department of Cardiovascular Biology and Medicine, Niigata University Graduate School of Medical and Dental Sciences.
  • Sasaki K; Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine.
  • Funakoshi S; Center for iPS Cell Research and Application (CiRA), Kyoto University.
  • Wuriyanghai Y; Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine.
  • Nishiuchi S; Department of Cardiovascular and Respiratory Medicine, Shiga University of Medical Science.
  • Harita T; Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine.
  • Yamamoto Y; Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine.
  • Kohjitani H; Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine.
  • Hirose S; Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine.
  • Yokoi F; Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine.
  • Chen J; Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine.
  • Baba O; Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine.
  • Horie T; Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine.
  • Chonabayashi K; Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine.
  • Ohno S; Center for iPS Cell Research and Application (CiRA), Kyoto University.
  • Toyoda F; Department of Cardiovascular and Respiratory Medicine, Shiga University of Medical Science.
  • Yoshida Y; Department of Physiology, Shiga University of Medical Science.
  • Ono K; Center for iPS Cell Research and Application (CiRA), Kyoto University.
  • Horie M; Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine.
  • Kimura T; Department of Cardiovascular and Respiratory Medicine, Shiga University of Medical Science.
Circ J ; 81(12): 1783-1791, 2017 Nov 24.
Article en En | MEDLINE | ID: mdl-28637969
ABSTRACT

BACKGROUND:

TheSCN5Agene encodes the α subunit of the cardiac voltage-gated sodium channel, NaV1.5. The missense mutation, D1275N, has been associated with a range of unusual phenotypes associated with reduced NaV1.5 function, including cardiac conduction disease and dilated cardiomyopathy. Curiously, the reported biophysical properties ofSCN5A-D1275N channels vary with experimental system.Methods and 

Results:

First, using a human embryonic kidney (HEK) 293 cell-based heterologous expression system, theSCN5A-D1275N channels showed similar maximum sodium conductance but a significantly depolarizing shift of activation gate (+10 mV) compared to wild type. Second, we generated human-induced pluripotent stem cells (hiPSCs) from a 24-year-old female who carried heterozygousSCN5A-D1275N and analyzed the differentiated cardiomyocytes (CMs). AlthoughSCN5Atranscript levels were equivalent between D1275N and control hiPSC-CMs, both the total amount of NaV1.5 and the membrane fractions were reduced approximately half in the D1275N cells, which were rescued by the proteasome inhibitor MG132 treatment. Electrophysiological assays revealed that maximum sodium conductance was reduced to approximately half of that in control hiPSC-CMs in the D1275N cells, and maximum upstroke velocity of action potential was lower in D1275N, which was consistent with the reduced protein level of NaV1.5.

CONCLUSIONS:

This study successfully demonstrated diminished sodium currents resulting from lower NaV1.5 protein levels, which is dependent on proteasomal degradation, using a hiPSC-based model forSCN5A-D1275N-related sodium channelopathy.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Mutación Missense / Canalopatías / Células Madre Pluripotentes Inducidas / Canal de Sodio Activado por Voltaje NAV1.5 Límite: Humans Idioma: En Revista: Circ J Asunto de la revista: ANGIOLOGIA / CARDIOLOGIA Año: 2017 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Mutación Missense / Canalopatías / Células Madre Pluripotentes Inducidas / Canal de Sodio Activado por Voltaje NAV1.5 Límite: Humans Idioma: En Revista: Circ J Asunto de la revista: ANGIOLOGIA / CARDIOLOGIA Año: 2017 Tipo del documento: Article
...