Your browser doesn't support javascript.
loading
Scaffold-in-Scaffold Potential to Induce Growth and Differentiation of Cardiac Progenitor Cells.
Ciocci, Matteo; Mochi, Federico; Carotenuto, Felicia; Di Giovanni, Emilia; Prosposito, Paolo; Francini, Roberto; De Matteis, Fabio; Reshetov, Igor; Casalboni, Mauro; Melino, Sonia; Di Nardo, Paolo.
Afiliación
  • Ciocci M; 1 Department of Chemical Sciences and Technology, University of Rome Tor Vergata , Rome, Italy .
  • Mochi F; 2 Department of Industrial Engineering, University of Rome Tor Vergata , Rome, Italy .
  • Carotenuto F; 3 Center for Regenerative Medicine, University of Rome Tor Vergata , Rome, Italy .
  • Di Giovanni E; 4 Department of Clinical Science and Translational Medicine, University of Rome Tor Vergata , Rome, Italy .
  • Prosposito P; 1 Department of Chemical Sciences and Technology, University of Rome Tor Vergata , Rome, Italy .
  • Francini R; 2 Department of Industrial Engineering, University of Rome Tor Vergata , Rome, Italy .
  • De Matteis F; 3 Center for Regenerative Medicine, University of Rome Tor Vergata , Rome, Italy .
  • Reshetov I; 2 Department of Industrial Engineering, University of Rome Tor Vergata , Rome, Italy .
  • Casalboni M; 3 Center for Regenerative Medicine, University of Rome Tor Vergata , Rome, Italy .
  • Melino S; 2 Department of Industrial Engineering, University of Rome Tor Vergata , Rome, Italy .
  • Di Nardo P; 3 Center for Regenerative Medicine, University of Rome Tor Vergata , Rome, Italy .
Stem Cells Dev ; 26(19): 1438-1447, 2017 10 01.
Article en En | MEDLINE | ID: mdl-28715970
The design of reliable biocompatible and biodegradable scaffolds remains one of the most important challenges for tissue engineering. In fact, properly designed scaffolds must display an adequate and interconnected porosity to facilitate cell spreading and colonization of the inner layers, and must release physical signals concurring to modulate cell function to ultimately drive cell fate. In this study, a combination of optimal mechanical and biochemical properties has been considered to design a one-component three-dimensional (3D) multitextured hydrogel scaffold to favor cell-scaffold interactions. A polyethylene glycol diacrylate woodpile (PEGDa-Wp) structure of the order of 100 µm has been manufactured using a microstereolithography process. Subsequently, the PEGDa-Wp has been embedded in a PEGDa hydrogel to obtain a 3D scaffold-in-scaffold (3D-SS) system. Finally, the 3D-SS capability to address cell fate has been assessed using human Lin- Sca-1+ cardiac progenitor cells (hCPCs). Results have shown that a multitextured 3D scaffold represents a favorable microenvironment to promote hCPC differentiation and orientation. In fact, while cultured on 3D-SS, hCPCs adopt an ordered 3D spatial orientation and activate the expression of structural proteins, such as the α-sarcomeric actinin, a specific marker of the cardiomyocyte phenotype, and connexin 43, the principal gap junction protein of the heart. Although preliminary, this study demonstrates that complex multitextured scaffolds closely mimicking the extracellular matrix structure and function are efficient in driving progenitor cell fate. A leap forward will be determined by the use of advanced 3D printing technologies that will improve multitextured scaffold manufacturing and their biological efficiency.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Diferenciación Celular / Miocitos Cardíacos / Células Madre Adultas / Andamios del Tejido Límite: Aged / Aged80 / Female / Humans / Male / Middle aged Idioma: En Revista: Stem Cells Dev Asunto de la revista: HEMATOLOGIA Año: 2017 Tipo del documento: Article País de afiliación: Italia

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Diferenciación Celular / Miocitos Cardíacos / Células Madre Adultas / Andamios del Tejido Límite: Aged / Aged80 / Female / Humans / Male / Middle aged Idioma: En Revista: Stem Cells Dev Asunto de la revista: HEMATOLOGIA Año: 2017 Tipo del documento: Article País de afiliación: Italia
...