Your browser doesn't support javascript.
loading
Identification of Lead Molecules in Garcinia mangostana L. Against Pancreatic Cholesterol Esterase Activity: An In Silico Approach.
Varghese, George Kadakasseril; Abraham, Rini; Chandran, Nisha N; Habtemariam, Solomon.
Afiliación
  • Varghese GK; Department of Botany, St. Berchmans' College, Changanassery, Kerala, India. kvgeorge58@yahoo.in.
  • Abraham R; School of Environmental Sciences, Mahatma Gandhi University, Kottayam, Kerala, India.
  • Chandran NN; Biotechnology and Bioinformatics Division, Saraswathy Thangavelu Centre, Jawaharlal Nehru Tropical Botanic Garden & Research Institute, Thiruvananthapuram, Kerala, India.
  • Habtemariam S; Pharmacognosy Research Laboratories, Medway School of Science, University of Greenwich, KENT, Medway, ME4 4TB, UK.
Interdiscip Sci ; 11(2): 170-179, 2019 Jun.
Article en En | MEDLINE | ID: mdl-28741279
Hypercholesterolemia is one of the major risk factors for the development and progression of atherosclerosis. Hence, inhibitors of cholesterol absorption have been investigated for decades as a strategy to prevent and treat cardiovascular diseases associated with hypercholesterolemia. Cholesterol esterase (CEase) in pancreatic juice plays a vital role in the hydrolysis of dietary cholesterol esters to cholesterol and fatty acids. Since inhibition of CEase might lead to a reduction of cholesterol absorption, an attempt is made in this study to identify lead molecules of Garcinia mangostana by the in silico approach. The study employed software applications viz., AutoDock 4.2 and GOLD Suite of Programs 5.2. The study revealed the efficacy of three compounds viz., epicatechin, euxanthone, and 1,3,5,6-tetrahydroxy-xanthone, which exhibited least binding energy in AutoDock and moderate scoring in GOLD. The molecular properties as well as biological activity of these three compounds were predicted by molinspiration prediction tool. The results show the crucial role of polyphenolic compounds to limit the activity of CEase. The drug-likeness prediction revealed the prospects of the identified lead molecules as potential drug candidates.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Simulación por Computador / Esterol Esterasa / Garcinia mangostana Tipo de estudio: Diagnostic_studies / Prognostic_studies / Risk_factors_studies Idioma: En Revista: Interdiscip Sci Asunto de la revista: BIOLOGIA Año: 2019 Tipo del documento: Article País de afiliación: India

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Simulación por Computador / Esterol Esterasa / Garcinia mangostana Tipo de estudio: Diagnostic_studies / Prognostic_studies / Risk_factors_studies Idioma: En Revista: Interdiscip Sci Asunto de la revista: BIOLOGIA Año: 2019 Tipo del documento: Article País de afiliación: India
...