Your browser doesn't support javascript.
loading
Efficient steady-state solver for hierarchical quantum master equations.
Zhang, Hou-Dao; Qiao, Qin; Xu, Rui-Xue; Zheng, Xiao; Yan, YiJing.
Afiliación
  • Zhang HD; Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical Physics and iChEM and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China.
  • Qiao Q; Discipline of Neuroscience, Department of Anatomy, Histology and Embryology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
  • Xu RX; Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical Physics and iChEM and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China.
  • Zheng X; Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical Physics and iChEM and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China.
  • Yan Y; Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical Physics and iChEM and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China.
J Chem Phys ; 147(4): 044105, 2017 Jul 28.
Article en En | MEDLINE | ID: mdl-28764354
ABSTRACT
Steady states play pivotal roles in many equilibrium and non-equilibrium open system studies. Their accurate evaluations call for exact theories with rigorous treatment of system-bath interactions. Therein, the hierarchical equations-of-motion (HEOM) formalism is a nonperturbative and non-Markovian quantum dissipation theory, which can faithfully describe the dissipative dynamics and nonlinear response of open systems. Nevertheless, solving the steady states of open quantum systems via HEOM is often a challenging task, due to the vast number of dynamical quantities involved. In this work, we propose a self-consistent iteration approach that quickly solves the HEOM steady states. We demonstrate its high efficiency with accurate and fast evaluations of low-temperature thermal equilibrium of a model Fenna-Matthews-Olson pigment-protein complex. Numerically exact evaluation of thermal equilibrium Rényi entropies and stationary emission line shapes is presented with detailed discussion.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: J Chem Phys Año: 2017 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: J Chem Phys Año: 2017 Tipo del documento: Article País de afiliación: China
...