Demonstration of extended field-of-view ultrasound's potential to increase the pool of muscles for which in vivo fascicle length is measurable.
J Biomech
; 63: 179-185, 2017 10 03.
Article
en En
| MEDLINE
| ID: mdl-28882331
Static, B-mode ultrasound is the most common method of measuring fascicle length in vivo. However, most forearm muscles have fascicles that are longer than the field-of-view of traditional ultrasound (T-US). As such, little work has been done to quantify in vivo forearm muscle architecture. The extended field-of-view ultrasound (EFOV-US) method, which fits together a sequence of B-mode images taken from a continuous ultrasound scan, facilitates direct measurements of longer, curved fascicles. Here, we test the validity and reliability of the EFOV-US method for obtaining fascicle lengths in the extensor carpi ulnaris (ECU). Fascicle lengths from images of the ECU captured in vivo with EFOV-US were compared to lengths from a well-established method, T-US. Images were collected in a joint posture that shortens the ECU such that entire fascicle lengths were captured within a single T-US image. Resulting measurements were not significantly different (p=0.18); a Bland-Altman test demonstrated their agreement. A novice sonographer implemented EFOV-US in a phantom and in vivo on the ECU. The novice sonographer's measurements from the ultrasound phantom indicate that the combined imaging and analysis method is valid (average error=2.2±1.3mm) and the in vivo fascicle length measurements demonstrate excellent reliability (ICC=0.97). To our knowledge, this is the first study to quantify in vivo fascicle lengths of the ECU using any method. The ability to define a muscle's architecture in vivo using EFOV-US could lead to improvements in diagnosis, model development, surgery guidance, and rehabilitation techniques.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Músculo Esquelético
/
Antebrazo
Tipo de estudio:
Diagnostic_studies
/
Guideline
/
Prognostic_studies
Límite:
Adult
/
Animals
/
Female
/
Humans
/
Male
Idioma:
En
Revista:
J Biomech
Año:
2017
Tipo del documento:
Article
País de afiliación:
Estados Unidos