Your browser doesn't support javascript.
loading
Electrospun gelatin/sodium bicarbonate and poly(lactide-co-ε-caprolactone)/sodium bicarbonate nanofibers as drug delivery systems.
Sang, Qingqing; Williams, Gareth R; Wu, Huanling; Liu, Kailin; Li, Heyu; Zhu, Li-Min.
Afiliación
  • Sang Q; College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China.
  • Williams GR; UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK.
  • Wu H; College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China.
  • Liu K; College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China.
  • Li H; College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China.
  • Zhu LM; College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China; Key Laboratory of Science & Technology of Eco-Textiles, Ministry of Education, Donghua University, Shanghai 201620, China. Electronic address: lzhu@dhu.edu.cn.
Mater Sci Eng C Mater Biol Appl ; 81: 359-365, 2017 Dec 01.
Article en En | MEDLINE | ID: mdl-28887984
ABSTRACT
In this work, we report electrospun nanofibers made of model hydrophobic (poly(lactide-co-ε-caprolactone); PLCL) and hydrophilic (gelatin) polymers. We explored the effect on drug release of the incorporation of sodium bicarbonate (SB) into these fibers, using the potent antibacterial agent ciprofloxacin as a model drug. The fibers prepared are smooth and have relatively uniform diameters lying between ca. 600 and 850nm. The presence of ciprofloxacin in the fibers was confirmed using IR spectroscopy. X-ray diffraction showed the drug to be incorporated into the fibers in the amorphous form. In vitro drug release studies revealed that, as expected, more rapid drug release was seen with gelatin fibers than those made of PLCL, and a greater final release percentage was obtained. The inclusion of SB in the gelatin fibers imparts them with pH sensitivity gelatin/SB fibers showed faster release at pH5 than pH7.4, while fibers without SB gave the same release profiles at both pHs. The PLCL fibers have no pH sensitivity, even when SB was included, as a result of their hydrophobic structure precluding the ingress of solvent. In vitro cell culture studies showed that all the fibers are able to promote cell proliferation. The ciprofloxacin loaded fibers are effective in inhibiting Escherichia coli and Staphylococcus aureus growth in antibacterial tests. Thus, the gelatin-based fibers can be used as pH-responsive drug delivery systems, with potential applications for instance in the treatment of tumor resection sites. Should these become infected, the pH would drop, resulting in ciprofloxacin being released and the infection halted.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Sistemas de Liberación de Medicamentos Idioma: En Revista: Mater Sci Eng C Mater Biol Appl Año: 2017 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Sistemas de Liberación de Medicamentos Idioma: En Revista: Mater Sci Eng C Mater Biol Appl Año: 2017 Tipo del documento: Article País de afiliación: China
...