Your browser doesn't support javascript.
loading
Radiomics in Brain Tumor: Image Assessment, Quantitative Feature Descriptors, and Machine-Learning Approaches.
Zhou, M; Scott, J; Chaudhury, B; Hall, L; Goldgof, D; Yeom, K W; Iv, M; Ou, Y; Kalpathy-Cramer, J; Napel, S; Gillies, R; Gevaert, O; Gatenby, R.
Afiliación
  • Zhou M; From the Stanford Center for Biomedical Informatic Research (M.Z., O.G.).
  • Scott J; Department of Radiology (J.S., B.C., S.N., R. Gillies, R. Gatenby), Moffitt Cancer Research Center, Tampa, Florida.
  • Chaudhury B; Department of Radiology (J.S., B.C., S.N., R. Gillies, R. Gatenby), Moffitt Cancer Research Center, Tampa, Florida.
  • Hall L; Department of Computer Science and Engineering (L.H., D.G.), University of South Florida, Tampa, Florida.
  • Goldgof D; Department of Computer Science and Engineering (L.H., D.G.), University of South Florida, Tampa, Florida.
  • Yeom KW; Department of Radiology (K.W.Y., M.I.), Stanford University, Stanford, California.
  • Iv M; Department of Radiology (K.W.Y., M.I.), Stanford University, Stanford, California.
  • Ou Y; Department of Radiology (Y.O., J.K.-C.), Massachusetts General Hospital, Boston, Massachusetts.
  • Kalpathy-Cramer J; Department of Radiology (Y.O., J.K.-C.), Massachusetts General Hospital, Boston, Massachusetts.
  • Napel S; Department of Radiology (J.S., B.C., S.N., R. Gillies, R. Gatenby), Moffitt Cancer Research Center, Tampa, Florida.
  • Gillies R; Department of Radiology (J.S., B.C., S.N., R. Gillies, R. Gatenby), Moffitt Cancer Research Center, Tampa, Florida.
  • Gevaert O; From the Stanford Center for Biomedical Informatic Research (M.Z., O.G.) Olivier.gevaert@stanford.edu Robert.gatenby@moffitt.org.
  • Gatenby R; Department of Radiology (J.S., B.C., S.N., R. Gillies, R. Gatenby), Moffitt Cancer Research Center, Tampa, Florida Olivier.gevaert@stanford.edu Robert.gatenby@moffitt.org.
AJNR Am J Neuroradiol ; 39(2): 208-216, 2018 02.
Article en En | MEDLINE | ID: mdl-28982791
Radiomics describes a broad set of computational methods that extract quantitative features from radiographic images. The resulting features can be used to inform imaging diagnosis, prognosis, and therapy response in oncology. However, major challenges remain for methodologic developments to optimize feature extraction and provide rapid information flow in clinical settings. Equally important, to be clinically useful, predictive radiomic properties must be clearly linked to meaningful biologic characteristics and qualitative imaging properties familiar to radiologists. Here we use a cross-disciplinary approach to highlight studies in radiomics. We review brain tumor radiologic studies (eg, imaging interpretation) through computational models (eg, computer vision and machine learning) that provide novel clinical insights. We outline current quantitative image feature extraction and prediction strategies with different levels of available clinical classes for supporting clinical decision-making. We further discuss machine-learning challenges and data opportunities to advance radiomic studies.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Neoplasias Encefálicas / Interpretación de Imagen Asistida por Computador / Neuroimagen / Aprendizaje Automático Tipo de estudio: Prognostic_studies / Qualitative_research Límite: Humans Idioma: En Revista: AJNR Am J Neuroradiol Año: 2018 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Neoplasias Encefálicas / Interpretación de Imagen Asistida por Computador / Neuroimagen / Aprendizaje Automático Tipo de estudio: Prognostic_studies / Qualitative_research Límite: Humans Idioma: En Revista: AJNR Am J Neuroradiol Año: 2018 Tipo del documento: Article
...