Your browser doesn't support javascript.
loading
Genome-wide prediction of minor-groove electrostatic potential enables biophysical modeling of protein-DNA binding.
Chiu, Tsu-Pei; Rao, Satyanarayan; Mann, Richard S; Honig, Barry; Rohs, Remo.
Afiliación
  • Chiu TP; Computational Biology and Bioinformatics Program, Departments of Biological Sciences, Chemistry, Physics & Astronomy, and Computer Science, University of Southern California, Los Angeles, CA 90089, USA.
  • Rao S; Computational Biology and Bioinformatics Program, Departments of Biological Sciences, Chemistry, Physics & Astronomy, and Computer Science, University of Southern California, Los Angeles, CA 90089, USA.
  • Mann RS; Departments of Systems Biology and Biochemistry & Molecular Biophysics, Mortimer B. Zuckerman Institute, Columbia University, New York, NY 10032, USA.
  • Honig B; Departments of Systems Biology and Biochemistry & Molecular Biophysics, Mortimer B. Zuckerman Institute, Columbia University, New York, NY 10032, USA.
  • Rohs R; Howard Hughes Medical Institute, New York, NY 10032, USA.
Nucleic Acids Res ; 45(21): 12565-12576, 2017 Dec 01.
Article en En | MEDLINE | ID: mdl-29040720
Protein-DNA binding is a fundamental component of gene regulatory processes, but it is still not completely understood how proteins recognize their target sites in the genome. Besides hydrogen bonding in the major groove (base readout), proteins recognize minor-groove geometry using positively charged amino acids (shape readout). The underlying mechanism of DNA shape readout involves the correlation between minor-groove width and electrostatic potential (EP). To probe this biophysical effect directly, rather than using minor-groove width as an indirect measure for shape readout, we developed a methodology, DNAphi, for predicting EP in the minor groove and confirmed the direct role of EP in protein-DNA binding using massive sequencing data. The DNAphi method uses a sliding-window approach to mine results from non-linear Poisson-Boltzmann (NLPB) calculations on DNA structures derived from all-atom Monte Carlo simulations. We validated this approach, which only requires nucleotide sequence as input, based on direct comparison with NLPB calculations for available crystal structures. Using statistical machine-learning approaches, we showed that adding EP as a biophysical feature can improve the predictive power of quantitative binding specificity models across 27 transcription factor families. High-throughput prediction of EP offers a novel way to integrate biophysical and genomic studies of protein-DNA binding.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Factores de Transcripción / ADN / Proteínas de Unión al ADN Tipo de estudio: Health_economic_evaluation / Prognostic_studies / Risk_factors_studies Idioma: En Revista: Nucleic Acids Res Año: 2017 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Factores de Transcripción / ADN / Proteínas de Unión al ADN Tipo de estudio: Health_economic_evaluation / Prognostic_studies / Risk_factors_studies Idioma: En Revista: Nucleic Acids Res Año: 2017 Tipo del documento: Article País de afiliación: Estados Unidos
...